IS Al ABOUT TO
REVOLUTIONISE
SOFTWARE
DEVELOPMENT?

By Matthew Belcher
and Danish Javed

ccdurance




A Lifting Tide for All

In the rapidly evolving world of technology, it seems we are entering a
new era with the advent of Generative Artificial Intelligence (or Gen Al as it
is more commonly known). Gen Al promises to redefine the way we
approach software development, automating mundane coding tasks,
generating complex code structures and improving software quality.
Given this, is Gen Al now poised to revolutionise software development?
Is that just hype or are we truly on the cusp of something

transformational?

Gen Al tooling could drastically increase
productivity, reduce human error, and unleash a
wave of innovation by providing developers the
freedom to focus on high-level strategic thinking
and creative problem-solving. This revolutionary
approach invites us to reimagine software
development not just as a human-driven
discipline, but perhaps a symbiotic relationship
between human intellect and artificial intelligence,
where the whole far surpasses the sum of its
parts. In this article, we’ll take a closer look at
some of these Gen Al tools to understand what
impact they might have on software development
and how they might lead us into some different
ways of working. We'll reflect on some of the
broader legal and ethical implications as well as
considering what it might mean for Software
Craftsmanship.

What is Generative Al

Generative Al is a type of artificial intelligence
technology that can produce various types of
content, including text, imagery, audio, video. All
of this is possible from having consumed huge
amounts of training data from various sources,
spotting patterns and being able to generate new

1 Al REVOLUTION E-BOOK

data based on these observed patterns, and
synthetic data from a given input and in particular
in response to prompts.

This art of giving precise prompts is a sub field of
data science and machine learning also known as
Prompt Engineering. Prompt engineering is about
giving clear instructions for getting the best help. It
makes the assistance smarter and more effective
for various tasks. The more concise the prompts,
the better the outcome from the Gen Al tools.

Generative Al models learn the patterns and
structure of their input training data and then
generate new data that has similar characteristics.
Generative Al has potential applications across a
wide range of industries, including art, writing,
software development, healthcare, finance,
gaming, marketing, fashion, administration and
regulation within the public sector.

One thing to bear in mind is that Gen Al models
are not general purpose models applicable to
everything - moreover it does not mean General
Intelligence. They lack common sense, emotional
intelligence and are solely designed to generate
new data that resembles a given dataset.

ccdurance




Chat GPT $ -

OpenAl’s generative pre-trained transformer or, ChatGPT

as it is more commonly known, is not strictly touted as a
software development tool. It is more a general-purpose
user interface on top of a machine learning language
model that is able to generate human-like textual output
in response to inputs it receives. Infact, the model is so
vast it is referred to as a Large Language Model (or LLM).

However, despite not being aimed at software
development specifically, it has certainly had an
impact on how software developers approach
writing software. It provides a software developer
with an interface to “talk” through a coding
problem. ChatGPT is then able to respond,
suggesting prompts and code snippets for the
engineer to use. It is important to keep in mind,
the responses ChatGPT provides are generated
using the vast amount of data it has collected and
been trained on from the Internet, primarily.

The most recent iteration of the underlying model
GPT4.5 (at the time of writing) has brought various
improvements to the responses it can give. These
can then be used for a range of tasks related to
software development such as improving
documentation, generating test cases, critiquing
code and of course generating code snippets.

P Al REVOLUTION E-BOOK

ChatGPT can be used for a range of different use
cases within software development. It can provide
assistance in understanding a programming
language or framework, allowing developers to
quickly access relevant information and code
snippets. It generates code and offers
suggestions, speeding up prototyping and saving
time on routine tasks. ChatGPT can assist in error
detection and debugging, providing insights and
potential fixes. It also facilitates rapid prototyping
and exploration, enabling developers to
experiment with different ideas. Additionally, its
natural language interface enhances accessibility
for users with varying levels of programming
expertise.

At Codurance, we champion Extreme
Programming (XP) practices in the software
development work with our clients. One of these
practices is Pair Programming. However, we take
a pragmatic approach to this - not everything
requires Pair Programming. With the advent of
ChatGPT and similar tools, it is possible to mimic
some of the benefits of Pair Programming.

codurance




While ChatGPT clearly has a lot to offer within
software development, there are also limitations
to consider. It may lack contextual understanding
depending on the plugin being used, leading to
irrelevant or inaccurate suggestions that require
human validation. The model's dependency on
training data can introduce biases or flawed code

Privacy and security concerns may arise if
sensitive information is inadvertently shared.
Ethical considerations, such as avoiding biassed
or discriminatory code, need attention. Over
reliance on ChatGPT may hinder skill
development, and real-time collaboration is still
essential for nuanced discussions.

examples. It may not fully comprehend the
developer's intent or project context, resulting in
partially addressing desired functionality.

GitHub Copilot

GitHub Copilot is the latest in a series of tools making
waves in the software development industry. We were A1 ] ®
pleasantly surprised by its speed of suggestions and \ % ey
correctness. Our experience of using this together with L2 DY &
the Test Driven Development (TDD) approach worked
well. It was almost like having another person pair with
us. The generated code snippets were not always
perfect and often needed tweaking but they got us part
of the way there to avoid the mundane setup.

The latency of suggestions was quite good, it was
noticeable at times but generally was a good
experience. We didn’t think that cycling through
suggested snippets was as natural as other
options.

When a test-case is named well, Copilot will aim to
fill the body of the test based on our method
naming and utilising the code context. While this is
not the typical usage scenario of Copilot exhibited
from various coding demonstrations i.e. providing
step-by-step instructions or prompts it did well to
create the body of the test.

codurance

3 Al REVOLUTION E-BOOK




Copilot is also under heavy development with a lot
of features being released on a regular basis. One
of the newer additions to the plugin is the chat
feature (Only available in VSCode at the time of
writing) as well as the Copilot Labs that have the
concept of Brushes e.g. Refactor, Cleanup,
Readable etc. that aim to make your code cleaner,
readable or help to refactor to an alternative.

Another interesting feature in Copilot Labs is that
you can translate code from one language to
another e.g. from Java to Python at a snippet
level. This indicates a possibility in the future to
translate an entire application from one language
to another, which would prove to be useful if
someone wants to port their codebase to an
alternative language. Perhaps as part of a wider
journey to evolve their technical stack. This could
be especially useful for organisations wishing to
undertake a software modernisation initiative
involving older codebases or languages.

AWS Code Whisperer

Amazon AWS has been working on their own software
development Al assistant. Similar to Copilot it supports
many languages, popular IDEs and addresses the same
needs of Al assisted code generation. Just like our TDD
approach with Copilot, we were able to get method

completion from a well named testcase.

The implementation details of CodeWhisperer are
not well known but it’s been trained on code that’s
open-source or internal to Amazon. It’s currently
being offered for free for individuals with an AWS
Builders account and licensed version as
CodeWhisperer Professional for organisations
currently making use of AWS Cloud services.

4 Al REVOLUTION E-BOOK

It is important to note that CodeWhisperer is also
the same as Copilot where it can help write
applications but, an area where CodeWhisperer
really shines is when writing code for AWS
services. Some of these commonly used services
include AWS S3, Lambda etc. Copilot can do the
same but CodeWhisperer does a better job of
doing so.

codurance




Another out of the box feature is that Code
Whisperer will also check for security
vulnerabilities listed in the OWASP Top 10 against
the code being generated or written by the
engineer. Once a security vulnerability is
identified, CodeWhisperer will provide
suggestions on how to fix them. However, this
functionality is limited to Python, Java & JavaScript
at this time.

Overall, based on our experience to-date, we
believe that CodeWhisperer in its current state is
not as feature-rich as Copilot but this could of
course change in the future as this is a fast
moving space, we continue to monitor both tools
actively.

Privacy & Security

Concerns

Privacy and security are crucial aspects to
consider when using tools like GitHub Copilot and
CodeWhisperer. While these Al-driven coding
assistants aim to provide efficient and accurate
suggestions, it is important to note that there is a
possibility of generating code with security
vulnerabilities, despite efforts to filter out insecure
code from their training data.

It is essential to acknowledge that the emergence
of these Al tools presents security implications
that need to be addressed. As these tools
become more sophisticated, it becomes
imperative to have robust security measures in
place to safeguard sensitive information and
prevent potential misuse.

5 Al REVOLUTION E-BOOK

An important thing to consider is that as users of
these tools, we retain ownership of the code
generated. This also includes any suggestions
offered by these tools, as these are customised to
our specific requirements based on the prompts
we provide.

GitHub Copilot and CodeWhisperer both use data
collection to enhance their services. GitHub
Copilot captures real-time prompts, Al-generated
suggestions, and user engagement data within
the IDE. However, GitHub Copilot for Business
doesn't store prompts and suggestions, only
pseudonymous user engagement data.

codurance




Similarly, CodeWhisperer (individual) stores usage
and content data to improve its service, but users
can opt out if they prefer not to share this data.
The collected data includes client-side telemetry
and content, but at the professional tier, content
collection for service improvement is disabled.
Rest assured, telemetry doesn't include actual
code or personally identifiable information (Pll),
and data usage can be limited to your own VPC
for better control.

Software

Although both tools lack access to the source
code, they may still have access to contextual
information like the tech stack being used and
domain feature descriptions provided through
prompts. To avoid any intellectual property issues,
consulting with legal advisors is recommended.
Understanding these privacy and security
considerations helps us to make informed
decisions and to utilise these powerful tools while
safeguarding our code and personal information.

Craftsmanship & Al

Those that are familiar with Codurance will know
that the principles of Software Craftsmanship are
at the very core of the work we do. So it would be
remiss of us to not consider this when discussing
how Al might impact Software Craftsmanship. For
those unfamiliar with the principles of Software
Craftsmanship, they are designed to support the
overall goal of raising the bar of professional
software development within the industry.

It is our belief that even with the rise of Al and
Generative Al code assistance tooling, Software
Craftsmanship still very much has a place within
software development. Whilst Gen Al code
assistance tools such as the ones discussed in this
article can generate code that may well be
functionally correct it is important to remember
that they are still just tools. As such they lack the
ability to understand the nuances of the business
domain, the specific needs of a user, or a deeper
understanding of the wider context in which the
software being written resides.

6 Al REVOLUTION E-BOOK e

Software Craftsmanship is not just about creating
functionally correct software. At the heart of it is
the notion of taking pride in the software being
developed and producing well-designed,
maintainable and reliable software solutions.
Something that a human, a Software Craftsperson
must own and not outsource to a tool.

However, we do believe that Software
Craftsmanship and Al can happily coexist and
compliment each other. For example, Gen Al code
assistance tools and other related tooling can be
used to automate repetitive tasks that are well
understood, not overly complex but time
consuming all the same. This frees up time for
software developers to focus more of their time
and energy on more value-adding activities such
as overall architectural design, solving complex
problems and implementing business critical
features.

codurance




Conclusion

At the beginning of this article, we posed the
question of whether or not Al is poised to
revolutionise software development. Whilst the
release of Gen Al tools such as the ones
discussed here, undoubtedly have the potential to
increase productivity amongst other things there
is still a way to go before we can declare that
software development has been revolutionised.

Those that are following Al will know that this is an
incredibly fast-moving space, with new tooling
seemingly being released every week. This
means that it is also a constantly evolving space -
Al models are being trained and new models
released. Each model is seemingly more
advanced than the last. At the time of writing,
Meta has just released of their second-generation
open-source large language model Llama2. All of
this means that whilst Al isn’t revolutionising
software development at this moment in time, it
certainly does have the potential to be
transformative.

What is clear is that Al is not going anywhere and
as such it is vital that technology leaders start to
assess how Al might impact their software
development process. Those that do so will find
themselves best placed to benefit from it. A part of
this assessment needs to include some of the
security and legal implications discussed earlier in
this article as well as how current processes and
technical practices may evolve or new practices
be introduced to maximise the benefit of Al
adoption. For example, a common theme of
discussion recently has been around Test Driven
Development and how Al may play a role in that
practice.

7 Al REVOLUTION E-BOOK

It is important to understand the full implications of
adopting Al tooling in your software development
process. Whilst these Al tools can offer
tremendous assistance, the suggestions and
prompts generated by these tools are owned by
the respective companies. This raises concerns
about ownership and intellectual property.
Software developers and technical leaders need
to be mindful of this and take necessary
precautions to protect their own ideas and
contributions. That being said, Meta’s open
sourcing of their latest Al model is certainly an
interesting development in this space.

As well as understanding the legal and ethical
implications it is also important to realise that
increased code-quantity does not necessitate
quality, in fact it could be argued that we are
going to see lots of ill-fitting code where early Al
models have been overly relied upon. Software
developers need to be practising caution when
using Gen Al code assistance tooling and applying
the same level of attention and care to the
generated code as they do to the code they write.

At Codurance, we are cautiously
optimistic by the potential of Al within
software development. We are excited
by the possibilities Al could open up
and the productivity improvements it
could bring in how software is
developed going forwards. But at the
same time, we remain mindful of
security, legal and indeed ethical
implications.

codurance




~
-
.
. 9

About the Authors

Q @codurance

8

Al REVOLUTION E-BOOK

Matt Belcher
Principal Craftsperson

Matt has over 15 years of experience working within software
development. The vast majority of that time he has spent as a consultant.
Matt has worked with a large number of clients across many countries,
tech stacks, languages and technical architectures. He has played
numerous roles during his career from Software Developer to Solutions
Architect. Nowadays Matt works alongside technical leaders from client
organisations advising and supporting in areas such as technical
architecture, software development and Agile practices.

Matt is passionate about helping organisations improve their software
delivery capabilities, whether it be through embedding good technical
practices or establishing a clear technical vision. He has a particular
interest in Event Driven Architectures and Serverless.

Danish Javed
Software Craftsperson

As a seasoned Backend Developer and co-organiser of Software Crafters
North, Danish is passionate about delivering good quality software
solutions. Danish has honed his skills in building and maintaining high-
performance web applications that are both robust and scalable. He is a
firm believer in the power of TDD, clean architecture, and clean code
principles to create the best possible outcomes for clients.

When it comes to working, Danish thrives in fast-paced, high-pressure
environments and is committed to delivering quality results. He is also an
active member of the software development community and love sharing
his knowledge and experiences to help others grow. Whether it's co-
organising events like Software Crafters Manchester or staying up-to-date
on the latest industry developments, Danish is always looking for ways to
better himself and those around him.

hello@codurance.com www.codurance.com

codurance




