
Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 1codurance.com

Elite Performance
Achieving Speed and Stability
with CI/CD and DevSecOps

2025

Ed Farrow
Principal Software Craftsperson

Fane Fonseka
 Software Craftsperson

Sam Griffiths
Principal Platform Engineer

Table of Contents

Foreword 	 3

Introduction	 4

North Star: DORA metrics 	 4

Foundations: CI/CD Principles 	 7

Engine: Developer Velocity 	 8

Discipline: XP Practices 	 11

Blueprint: Pipeline Example	 14

Shield: DevSecOps 	 17

Proof: Connecting Practices to DORA	 19

Conclusion 	 20

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 3

Foreword
The software development industry is riddled with waste and inefficiency! Too many systems
are unreliable. It doesn’t have to be this way. A handful of key disciplines, applied together, can
create a holistic approach that builds quality and speed into the process and eliminates waste.

One of the most recent and valuable additions to these disciplines is the adoption of DORA
metrics, the result of some of the most comprehensive research our industry has produced. Used
for process improvement, they can deliver significant, measurable gains. Used carelessly, they
risk becoming a management stick rather than a tool for genuine improvement.

Equally important are Test-Driven Development and Continuous Integration, practices drawn from
Extreme Programming. Combined with Agile Testing at multiple levels and types of automation,
these practices cut the risk of failure while tightening delivery cycles.

In commercial environments, techniques from Continuous Delivery and DevOps/DevSecOps are
essential. Security, performance, and reliability must be integral to the software we produce. Not
afterthoughts bolted on at the end of the lifecycle.

Ed, Fane, and Sam have done an excellent job of distilling these concepts into a compact guide.
For the experienced, it is a sharp reminder; for the curious, a clear introduction. I found it valuable
to see these practices explained together, their connections made explicit, and their collective
impact shown as part of a coherent, holistic approach.

Mashooq Badar
Co-Founder and Software Craftsman at Codurance

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 4

Introduction
A core challenge faced by many organisations is the perceived trade-off between the speed of
delivery and the stability and security of their systems.

However, the very practices that enable speed (working in small batches, implementing
comprehensive automation etc.) are the same practices that create stability, resilience, and
security. This creates a positive feedback loop where teams can move faster because they
are more stable and secure. This guide provides a proven blueprint for building this capability,
transforming your delivery process from a source of friction into a competitive advantage.

Our journey begins with establishing a North Star to serve as a focal point for achieving Elite
Performance. From there, we lay the Foundations of CI/CD, build the Engine for developer velocity,
and instill the Discipline of XP practices. Finally, we’ll provide the Blueprint for a high-performance
pipeline, protected by the Shield of modern DevSecOps, and finish by showing the Proof of how
these practices drive elite performance.

The path to high performance is not about a single tool or a quick fix; it requires a holistic
transformation of process, technical discipline, and culture. This is the journey Codurance guides
clients along, achieving transformative outcomes like moving from risky, lengthy release cycles to
multiple, reliable deployments per day.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 5

The North Star

Measure what matters
In software delivery, the industry-standard framework for software engineering performance is
the DevOps Research and Assessment (DORA) metrics1.

For over 10 years, the DORA research program has collected and analysed data from thousands
of organisations worldwide, identifying the key metrics that consistently correlate with high
software delivery and organisational performance. These metrics provide an objective, evidence-
based way to measure performance, diagnose systemic issues, and guide investment in technical
and process improvements.

The power of the DORA framework lies in its balance between two fundamental pillars: velocity
and stability. It recognises that delivering value quickly is meaningless if the product is unreliable,
and a stable product that never improves is of little use to customers.

DORA metrics encourage a holistic and sustainable improvement process while avoiding
optimising for speed at the expense of quality, or vice versa.

Velocity Pillar
Velocity metrics measure the speed and efficiency of the software delivery process. They provide
insight into the organisation’s ability to respond to market needs and deliver value to users.
Deployment Frequency

This metric measures how often an organisation successfully releases code to production. It
is a direct indicator of throughput and the ability to work in small, manageable batches. High-
performing teams can deliver value incrementally and efficiently, leading to faster feedback loops
and reduced deployment risk.

Elite performers achieve on-demand deployments, often multiple times per day, whereas low-
performing teams may deploy less than once every six months.

Lead Time for Changes

This metric measures the amount of time it takes for a code commit to be successfully running
in production. It encompasses the entire delivery pipeline, including code review, automated
testing, and deployment processes.
A shorter lead time indicates a highly efficient and automated pipeline, enabling the organisation
to react swiftly to customer feedback and changing market conditions.

Elite teams often have a lead time of less than one hour, a stark contrast to the weeks or months
taken by lower-performing teams.

1 �Accelerate State of DevOps 10 v2024.3. (2024). Available at:
https://services.google.com/fh/files/misc/2024_final_dora_report.pdf.

https://services.google.com/fh/files/misc/2024_final_dora_report.pdf

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 6

Stability Pillar
Stability metrics measure the quality and reliability of the software being delivered. They provide
insight into the effectiveness of the organisation’s quality assurance processes and the resilience
of its production systems.

Change Failure Rate (CFR)

This metric represents the percentage of deployments to production that result in a degraded
service and require remediation, such as a hotfix or a rollback. It is a crucial indicator of the
quality of the development and testing processes. A high CFR suggests potential issues with
code review practices, insufficient automated testing, or flawed deployment procedures.

Elite teams maintain a CFR between 0–15%, demonstrating their ability to deliver changes
reliably.

Mean Time to Restore (MTTR)

Also known as Mean Time to Recovery, this metric measures the average time it takes to restore
service after a production failure. It is the ultimate test of a system’s resilience and the team’s
ability to respond effectively to incidents. This includes any issue that impacts end-users, from a
full system outage to severe performance degradation. A low MTTR indicates robust monitoring,
effective incident response playbooks, and the ability to deploy fixes quickly.

Elite teams can often restore service in less than an hour, while low performers might take days
or weeks.

System-level Diagnostics
Simply tracking DORA metrics is not the end goal. Their true value lies in their function as a
diagnostic tool for the entire software delivery system. A poor metric should not be seen as a
failure of a team, but as a symptom pointing to a deeper, systemic constraint or inefficiency.

A high Lead Time for Change is a clear signal to investigate the entire delivery process for
bottlenecks. This is precisely the kind of systemic friction that the Codurance Value Stream and
Delivery Mapping processes are designed to uncover and resolve, helping teams pinpoint and
eliminate delays. Improving this metric doesn’t just reduce time-to-market; it directly translates
into higher developer productivity by shifting effort from reactive firefighting to proactive feature
development.

Similarly, a high Change Failure Rate is a direct indictment of the quality gates within the pipeline.
It suggests that the existing testing strategies are not comprehensive enough to catch defects
before they reach production. As well as reducing time to market, improving on this metric also
minimises the time spent by developers fixing issues in production and more time on developing
new features.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 7

This perspective reframes the objective from “we need to improve our DORA scores” to
“we need to use our DORA scores to identify and fix the root causes of issues in our delivery
process.” By focusing on improving the underlying practices, the metrics will improve as a
natural and sustainable consequence.

DORA metrics are diagnostic tools for software delivery.

Poor DORA
Metrics

Visible symptoms of
deeper issues

High Lead Time Bottlenecks in

delivery process

High Failure
Rate

Inadequate testing
strategies

Systemic
Constraints

Underlying
ineffiiciencies

in system

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 8

The Foundations
Principles of CI/CD

The Foundations
At the heart of high-performance software delivery are three interconnected practices:
Continuous Integration, Continuous Delivery, and Continuous Deployment.

Continuous Integration (CI)

CI is a development practice where each code merge automatically triggers a build and a run of
an automated test suite. CI is best paired with Trunk-based Development, where developers work
in short-lived branches and merge regularly. CI and Trunk-based Development provides rapid
feedback, ensures the codebase is always in a working state, and fosters collaboration.
It is possible to achieve CI-like automation with other branching strategies like gitflow, but Trunk-
based Development works best.

Continuous Delivery (CD)

Continuous Delivery is a practice where every code change that successfully passes all
automated tests is automatically packaged into a production-ready release artifact. This ensures
that the software is always in a state where it could be released to production at any time.
The final deployment to the live production environment is typically a business decision, often
executed with the press of a button.

Continuous Deployment

This is the ultimate state of pipeline automation and represents the highest level of maturity.
Every validated and tested change is deployed directly to production without any human
intervention. This practice maximises the speed of delivery, allowing new features and bug fixes
to reach customers within minutes of being completed.

Organisational Trust
The single distinction between Continuous Delivery and Continuous Deployment is the manual
approval gate before a production release. This gate only exists (as a safety net) because the
organisation, as a whole, does not yet have sufficient trust in its automated quality and security
processes to allow releases without a final manual check.

The journey to achieving Continuous Deployment is not primarily about acquiring new tools
or writing more automation scripts, but about building a system so reliable, a test suite so
comprehensive, and security checks so robust that the automated pipeline is demonstrably
more trustworthy than a final manual review.

This trust is not granted; it is earned.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 9

Our approach accelerates this journey by focusing on three pillars to build verifiable trust:

•	 Test-Driven Development (TDD), which ensure code quality at the unit level;

•	 comprehensive security practices (DevSecOps), which identify vulnerabilities before they are
merged; and

•	 risk-mitigating development patterns like Trunk-Based Development, which keep the main
codebase perpetually stable.

This shift in focus from automation to building a foundation of verifiable trust is what enables
organisations to remove the final manual gate and unlock the full potential of their software teams.

Reducing the Cost of Change
Every change to a software system, no matter how small, incurs a “transaction cost.”

This cost is the total sum of the effort, time, risk, and cognitive load required to move that change from
a developer’s local machine into the hands of a user in production. In traditional, manual software
development models, this transaction cost is exceptionally high. It includes the cost of manual testing
cycles, the coordination overhead for “release days,” the time spent resolving complex merge
conflicts, and the high risk associated with deploying a large batch of changes at once.

The fundamental purpose of a CI/CD pipeline is to drive this transaction cost to as close to zero
as possible.

By automating builds, testing, security scans, and deployments, the friction and risk associated
with each change is lowered, and the associated transaction cost is reduced.

When the cost and risk of a deployment are low, there is no incentive to bundle many changes
together into a large, infrequent release. This creates a powerful feedback loop:

•	 automation lowers the cost of change, which encourages smaller batches of work; and

•	 Smaller batches are easier to test, faster to review, and less risky to deploy, which makes the
entire automation process simpler, safer, and more efficient.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 10

The Engine
Driving Developer Velocity

Driving velocity with Trunk-based Development
While CI/CD provides the automated pathway for delivery, the source-control branching model
dictates the flow of work into that pathway. Trunk-Based Development is the branching model
that is most aligned with the principles of Continuous Integration and is a key technical practice
consistently adopted by high-performing teams.

Trunk-based Development is a version control management practice where all developers
collaborate on code in a single, shared branch. In this model, long-lived feature branches are
avoided. Instead, developers commit their work to very short-lived branches that are merged
back into the trunk frequently.

As a rule of thumb, branch lifetimes should be measured in hours rather than days.

This constant integration ensures that the trunk is always up-to-date and reflects the collective
work of the entire team, minimising the divergence between individual developer environments
and the main codebase.

Trunk-based Development vs GitFlow
The choice of branching model is a strategic one that has significant implications for a team’s
workflow, speed, and ability to practice CI/CD effectively. One of the most common alternatives
to Trunk-based Development is GitFlow.

GitFlow is a stricter branching model characterised by multiple, long-lived branches, including
main, develop, feature branches, release branches, and hotfix branches. This model was
designed for projects with scheduled, versioned releases, where features could be developed
in isolation over long periods and then merged together for a release candidate. While this
isolation can be beneficial for managing parallel development on large, distinct features, it is
fundamentally at odds with the principles of Continuous Integration.

In our work with clients, we consistently observe that teams using GitFlow face significant
challenges with delayed integration, resulting in large, complex, and painful merges (the very
‘merge hell’ that modern practices are designed to prevent).

Trunk-based Development, in contrast, is designed specifically for continuous flow. By enforcing
frequent merges into a single trunk, it ensures that integration happens continuously, not as a
separate, delayed phase. This minimises merge complexity, provides a constant feedback loop
for all developers, and, most importantly, keeps the trunk branch in a perpetually stable and
releasable state.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 11

Decoupling Deployment and Release
A critical enabling technique for practicing Trunk-based Development safely and effectively is
the use of feature flags (also known as feature toggles). A feature flag is a mechanism that allows
teams to modify system behavior or turn features on and off in a production environment without
deploying new code.

Developers wrap new, incomplete features within a feature flag, ensuring the changes are
isolated and dormant unless the flag is turned on. This allows them to merge their unfinished
code into the trunk branch safely. The code is deployed to production but remains dormant and
invisible to users because the flag is turned off, enabling the business to then decide when to
release features without the pressure of a corresponding software release.

Feature flags decouple the technical act of deployment from the business decision to release a
feature.

Feature Branch
Development

Trunk-Based
Development

Master
(or trunk) Master

(or trunk)
Long-lived
feature
branches

Short-lived
branches

Merging is difficult on a longer-lived
feature branch

Merging is done more frequently and
more easily for shorter branches

VS

Aspect Trunk-Based Development GitFlow

Branching Model Simple: A single trunk branch with
very short-lived task branches.

Complex: Multiple long-lived branches
(main, develop, feature, release,
hotfix).

Branch Lifespan Hours to less than a day. Days, weeks, or even months.

Integration Frequency Continuous; at least once per day per
developer.

Infrequent; only at the end of a
feature’s development.

Merge Complexity Low. Small, frequent merges prevent
“merge hell”.

High. Long-lived branches diverge
significantly, making merges painful
and risky.

Code State Main branch is always stable and
releasable.

The develop branch can be in an
unstable, intermediate state.

CI/CD Alignment Excellent. Trunk-based Development
is a foundational practice for CI/CD.

Poor. The model inherently creates
integration bottlenecks that hinder
continuous flow.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 12

The CI/CD pipeline can run continuously, deploying every change to production, while the
business retains precise control over when a new feature is made available to customers. This
eliminates the need for long-lived feature branches to hide work-in-progress, enabling true
Continuous Integration and Continuous Deployment.

Trunk-based Development: An Architecture Litmus Test
Challenges when adopting Trunk-based Development should be viewed as a powerful
diagnostic tool.

Teams new to Trunk-Based Development sometimes find the practice difficult to adopt. They
may discover that nearly every merge to the trunk branch seems to break unrelated parts of
the application, causing the build to fail frequently. This is often misinterpreted as a failure of
the Trunk-based Development model itself but, in reality, this pain is a key indicator of a flawed
application architecture.

In systems with tight coupling, a small change in one part of the codebase can have a large
and unpredictable “blast radius,” causing cascading failures elsewhere. To make Trunk-based
Development sustainable, teams are naturally forced to confront this architectural debt. They
must refactor their code towards a more modular, loosely-coupled design, where components
are independent, communicate through well-defined contracts or APIs, and can be changed and
tested in isolation.

Trunk-based Development reveals underlying architectural weaknesses that are hindering an
organisation’s ability to move quickly and safely.

Teams should use this feedback to guide their modernisation efforts, leveraging patterns like
the Strangler Fig Pattern to gradually transform a tightly coupled system into a modularised and
testable platform.

Over time, as the architecture becomes more modular, the friction of practicing Trunk-based
Development will decrease, and the team will reap its full benefits of speed and stability.

Legacy Legacy New NewNewNew

Indirection Layer Indirection Layer Indirection Layer Indirection Layer

Legacy Legacy

Stage 0
Planning and
preparation

Stage 1
Introduce

indirection layer

Stage 2
Introduce new

component

Stage 3
Add more

funcionality

Iterate

Stage N-1
Retire legacy

system

Stage N
Retire

indirection layer

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 13

The Discipline
The Role of XP
The modern DevOps and CI/CD practices advocated in this report are not new inventions. They
are contemporary implementations of highly disciplined principles that originated with Extreme
Programming (XP), an agile software development methodology that has been proven for decades.

XP emphasises technical excellence, rapid feedback loops, and a profound responsiveness to
changing customer requirements. The core values of XP (Communication, Simplicity, Feedback,
Courage, and Respect) provide the essential cultural foundation upon which these technical
practices can thrive.

Without this cultural underpinning, attempts to implement CI/CD or Trunk-based Development
often fail, as the necessary discipline and collaborative spirit are absent.

The Safety Net
At the heart of XP’s technical discipline is Test-Driven Development (TDD). TDD is a software
development practice that inverts the traditional coding process. Instead of writing production code
and then writing tests for it, TDD follows a short, repetitive cycle known as “Red-Green-Refactor”:

•	 Red:
The developer writes a small, automated test for a new piece of functionality. This test will fail,
because the functionality does not yet exist.

•	 Green:
The developer writes the absolute minimum amount of production code required to make
the failing test pass.

•	 Refactor:
With the safety of a passing test, the developer can now clean up and improve the design
of the production code, confident that they are not breaking its behavior.

Extreme
Programming

Values

Communication

Respect

Courage

Feedback

Simplicity

1

2

3
4

5

Extreme Programming
Extreme Programming Values

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 14

A comprehensive and, crucially, fast automated test suite
is a non-negotiable prerequisite for practicing CI/CD and
Trunk-Based Development safely. It is the automated test
suite that provides the technical reassurance to merge
code frequently into trunk and to refactor the codebase
relentlessly to improve its design. This test suite acts as
an automated regression-detection system, providing
immediate feedback if a new change has inadvertently
broken existing functionality.

TDD drives better software
TDD is not a testing practice. TDD is a design practice. It produces a comprehensive test suite
as a valuable byproduct, but its primary function is to guide developers toward creating modular,
maintainable, and loosely-coupled code.

By forcing the developer to write the test first, TDD shifts their perspective to that of a client
consuming the code. Before writing a single line of implementation, the developer must think
about how the component will be used, what its public API should look like, and how it should
behave under various conditions.

This test-first approach naturally leads to code that is more modular, loosely-coupled, and highly
cohesive. TDD makes design feedback immediate and unavoidable, guiding the developer
toward creating components that are inherently more maintainable and reusable because they
were designed from the outset to be testable.

Anyone on the team can read the tests to understand what a piece of code is supposed to do,
and they can run the tests to verify that it still does it.

Furthermore, the resulting collection of unit tests becomes a form of living, executable
documentation for the system. Unlike traditional written documentation, which can quickly
become outdated and fall out of sync with the actual code, the test suite is an always-current
and unambiguous specification of the system’s intended behavior.

Write a

failing test

Make the
test pass

Refactor

TDD

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 15

The Test Pyramid
The Test Pyramid is a strategic model for structuring an automated test suite to achieve the
necessary speed while maintaining comprehensive coverage.

Unit Tests (The Foundation)

The vast majority of tests should be unit tests. These tests verify a single unit of code in complete
isolation from its dependencies. They must be extremely fast to execute, often running thousands
of tests in seconds, and provide precise feedback.

Integration Tests (The Middle Layer)

A smaller number of tests should be integration tests. These slower tests verify the collaboration
between two or more components of the system, such as checking if the application code can
correctly interact with a database or an external API.

End-to-End (E2E) Tests (The Peak)

At the very top of the pyramid is a very small number of slow E2E tests. These tests automate
a user’s journey through the application’s user interface, validating the entire system from front
to back. They can provide a high amount of value through verifying user journeys, but are the
slowest, most brittle, and most expensive tests to write and maintain.

A slow build or test cycle is often a symptom of an “Inverted Pyramid”, where the team relies too
heavily on slow E2E tests.

Teams should strive to cover as much logic as possible with fast unit tests, using integration and
E2E tests sparingly to validate the connections between components and check critical user paths.

E2E tests

Integration tests

Unit tests

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 16

The Shield
DevSecOps protection

Shifting Security Left
Historically, security has been siloed as a late-stage, specialist-driven phase, handled by a
separate team using complex tools, leading to end-of-SDLC audits that delay releases. This siloed
approach and its delays are at odds with the rapid, iterative nature of modern CI/CD.

The Three Pillars of DevSecOps represent a fundamental shift in this paradigm. DevSecOps is
not a separate team or a final checklist, but a shared responsibility, automated and embedded
throughout the entire CI/CD pipeline to ensure that software is secure by design.

DevSecOps is the practice of integrating security testing and culture into every stage of the
DevOps lifecycle.

The primary goal of DevSecOps is to “shift security left”, finding and fixing vulnerabilities early.
This directly improves DORA metrics by preventing security-related change failures and reducing
unplanned work, both of which inflate lead times and harm developer morale.

Addressing a security flaw in the code before it is even merged is orders of magnitude cheaper
and faster than discovering it in production after a breach has occurred.

Accelerating Delivery
A frequent source of resistance to DevSecOps is the fear that adding security scans will
inevitably slow down the pipeline and hinder development velocity. While a poorly implemented,
fragmented security program can indeed become a bottleneck, a well-architected DevSecOps
strategy is a powerful accelerator.

Production incidents are a major source of disruption, forcing teams into a reactive mode, pulling
them away from planned feature development to work on high-priority, unplanned hotfixes.

DevSecOps Static Analysis

Code Review Threat Model

Policies

Code

Plan

Bu
ild

Penetration
Testing

Compliance
Validation

Releas
e

Monitor

Recover

Response

Detect

Monitor

Threat
 Intelligence

O
pe

ra
te

Deploy

Audit
Log

Test

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 17

By integrating fast, automated, and context-aware security checks directly into the developer’s
workflow, the pipeline catches security defects before they become deeply embedded in the system.
This proactive approach prevents defects from escalating into production incidents.

Investing in “shifting security left” is not a tax on development; it is a direct investment in
protecting the team’s delivery velocity and stability.

A mature DevSecOps pipeline improves DORA metrics by systematically reducing the volume
of security-related failures and the associated rework, allowing teams to ship features faster and
with greater confidence.

Pillar 1: Secure by Design
The most effective way to handle security is to prevent security issues from being created in
the first place. By integrating security considerations into the earliest stages of the software
development lifecycle (SDLC), we can embrace the principle of “shifting left” to its fullest extent,
even before a line of code is written.

A cornerstone of this pillar is Threat Modeling. This is a structured process where teams
proactively brainstorm and analyse potential threats, attack vectors, and vulnerabilities in an
application’s design. By thinking like an attacker early on, teams can identify and mitigate
security risks at the architectural level, which is far more effective and less costly than fixing them
later in the development cycle.

Methodologies like STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, Elevation of Privilege) provide a framework for systematically identifying a wide range of
potential threats.

Security should be a foundational component of a system, not a bolt-on.

The output of threat modeling directly informs the security requirements of the system, guiding
design decisions and ensuring that security is a foundational component.

Stride Security Model

Spoofing Identity
The act of

impersonating another
user to gain

unauthorised access.

Tampering with Data
Unauthorised alteration

of data to disrupt
or deceive.

Repudiation
The ability to deny actions

taken, complicating
accountability.

Information Disclosure
Unauthorised access

 to confidential
information.

Denial of Service
Disrupting access to

services or resources.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 18

Pillar 2: Governance and Guardrails
This pillar focuses on making the secure path the path of least resistance for developers. Instead
of acting as restrictive “gates” that block progress, a modern DevSecOps approach establishes
automated “guardrails” that guide development teams toward safe practices without hindering
their velocity.

There are three core enablers to providing unobtrusive guardrails:

Policy as Code (PaC)

Security and compliance policies are defined in code (e.g., using Open Policy Agent) and
integrated directly into the CI/CD pipeline. This allows for the automated enforcement of rules,
such as requiring specific security scanners to run or blocking dependencies with critical
vulnerabilities. This makes governance auditable, version-controlled, and consistently applied.

Automated Security Checks

The pipeline itself becomes a critical guardrail. By embedding automated security tools directly
into the workflow (as detailed in the next pillar), the pipeline provides immediate feedback to
developers, allowing them to fix issues within their normal workflow.

Making Security Easy

The goal is to provide developers with tools and training that are seamlessly integrated into their
environment. This includes IDE plugins that provide real-time feedback, clear and actionable
remediation advice, and reducing the noise of false positives so teams can focus on what matters.

Pillar 3: Detection and Response
While the first two pillars are proactive, this pillar focuses on the detective and reactive controls
needed to identify and respond to vulnerabilities that may still emerge.

A robust security posture is not achieved with a single tool. This is where the “defense-in-depth”
strategy comes into play, using multiple, layered security scanning tools within the CI/CD pipeline.
Each tool category has a specific purpose, ensuring different classes of vulnerabilities are caught
at the earliest possible moment. The following slides detail this toolchain.

Detection doesn’t stop when code is deployed. This pillar extends into the operational
environment through continuous monitoring. Tools like Security Information and Event
Management (SIEM) are critical here, aggregating logs and events from across the entire
ecosystem to provide a single pane of glass for security visibility.

This pillar enables teams to respond to incidents quickly and effectively, directly improving the
Mean Time to Restore (MTTR) and minimising the impact of any security event on the business
and its customers.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 19

The Blueprint
A High Performance Pipeline

The Blueprint
A high-performing pipeline is designed around three core principles:

•	 failing fast

•	 building a single immutable artifact, and

•	 promoting that artifact through progressively more rigorous stages of validation.

A pipeline can be grouped into two main phases:

•	 pre-merge validation (triggered on a pull request); and

•	 post-merge deployment (triggered on a merge to trunk).

This section provides a blueprint for a modern CI/CD pipeline based on these principles and
phases, focusing on the essential stages and capabilities rather than on specific tools.
The principles and workflow described are universal and can be implemented using any major
CI/CD platform, such as GitHub Actions, GitLab CI, Jenkins, or Azure DevOps.

Tooling examples and a Pipeline Maturity Assessment can be found in the Appendices.

Pre-Merge Validation
The entire automated process begins the moment a developer pushes a new commit and opens
a pull request (PR) to merge their short-lived task branch into the main trunk branch.

1.	 Trigger (On Pull/Merge Request): This action triggers the pre-merge validation pipeline, which
serves as the primary quality gate for the codebase.

2.	Static Analysis: The very first jobs in the pipeline should provide the quickest possible
feedback to the developer. This stage runs directly against the source code without needing
to compile or run it, and includes:

•	 Linters and Code Formatters to enforce consistent coding style and catch syntax errors.

•	 Secrets Scanning to catch inadvertently committed credentials like API keys or passwords.

•	 Static Application Security Testing (SAST) to analyse the source code and infrastructure
definitions for potential security vulnerabilities and misconfigurations.

3.	Build: If the static analysis passes, then the app is compiled in a clean, ephemeral, containerised
environment to ensure a reproducible build free from any leftover artifacts from previous runs.

4.	Unit Test: Immediately following the build, the comprehensive suite of unit tests is executed.
This is the core quality gate of the pipeline; a failure here indicates a regression in the
application’s fundamental logic and must block the PR.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 20

Post-Merge Validation
Only after all pre-merge checks have passed, and potentially a human code review has been
completed, is the pull request allowed to be merged into the trunk branch, thereby triggering the
post-merge process.

5.	Build & Package Artifact: The first step is to build a single, immutable, and versioned release
artifact from the trunk source code. The exact same artifact that is built here will be promoted
through all subsequent environments, eliminating the risk of environment-specific build
variations.

6.	Automated Acceptance Testing: The newly created artifact is then automatically deployed to
a dedicated, production-like testing environment (often called a staging or QA environment).
Once deployed, a suite of automated acceptance tests is executed against the running
application, including:

a.	Integration Tests to validate the interactions between the application’s components and its
external dependencies

b.	End-to-End Tests to validate critical user journeys

c.	Dynamic Application Security Testing (DAST) to find runtime vulnerabilities.

d.	Infrastructure Tests to verify any deployed infrastructure’s actual state and behavior.

e.	Software Bill of Materials registration and analysis to track application dependencies

After the artifact has passed all automated acceptance tests, it is ready for production.

Release
At this point we have an artifact, built in a clean environment, which has passed a battery of
automated tests to minimise risk. Now, it can be safely released to production.

In a Continuous Delivery model, this final step is a manual promotion. An authorised user can
trigger the deployment to production with a single click, confident that the artifact has been
thoroughly validated.
In a Continuous Deployment model, this step is fully automated. A successful acceptance test
run will immediately trigger deployment to production.

To further reduce the risk of this final step, teams can adopt advanced deployment strategies
including:

•	 Blue-Green deployments (where a new version is deployed alongside the old one, with traffic
switched over instantly); or

•	 Canary releases (where the new version is gradually rolled out to a small subset of users) can
be employed.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 21

The Proof
Driving DORA Improvements

Boosting Velocity
The DORA velocity metrics are a direct reflection of the flow of work through the development
system. Our recommended practices are designed to maximise this flow.

Trunk-Based Development and Continuous Integration are the primary engines of Deployment
Frequency. By requiring developers to merge small, completed pieces of work into trunk at least
daily, the system ensures there is always a new increment of value ready to be deployed. This
naturally shifts the organisation away from large, infrequent releases toward a continuous stream
of small, frequent ones.

A fully automated CI/CD pipeline is the single most significant factor in reducing Lead Time
for Changes. By eliminating manual handoffs, wait times for testing environments, and manual
deployment procedures, a process that once took weeks or months can be transformed into one
that can be measured in hours or even minutes.

A fast build and test cycle, enabled by a well-structured Test Pyramid and the TDD discipline,
is crucial for a short feedback loop. When developers receive feedback on their changes in
minutes, they can iterate quickly, removing a critical bottleneck and further slashing the Lead
Time for Changes.

Enhancing Stability
The DORA stability metrics are a reflection of the quality and resilience built into the system. Our
recommended practices create a robust safety net that minimises both the likelihood and the
impact of failures.

Test-Driven Development and the resulting comprehensive automated test suite provide a
powerful regression safety net. With high test coverage, teams have strong confidence that a
new change does not break existing functionality. This is the most direct and effective way to
lower the Change Failure Rate.

Integrated DevSecOps, with its layered approach to security scanning, prevents entire classes
of security vulnerabilities and infrastructure misconfigurations from ever reaching the production
environment. By catching these defects early, it further drives down the Change Failure Rate.

When a failure does occur in a system that practices small, frequent deployments, the root cause
is almost always one of a very small number of recent changes.
This dramatically simplifies troubleshooting and root cause analysis. Because the change was
small, it is often easy to either develop a quick fix and push it through the same fast pipeline or
simply revert the change. This ability to rapidly identify and remediate issues is what drives an
elite, low Mean Time to Restore (MTTR).

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 22

Conclusion
Elite software delivery performance is not a mystery, nor is it the result of chance. It is the direct
and predictable outcome of adopting a holistic system of interconnected, disciplined practices.
This report has laid out the blueprint for such a system. One that intentionally balances the
pursuit of speed with an unwavering commitment to stability and security, creating a sustainable
and accelerating pace of innovation.

Achieving this state requires more than just the adoption of new tools. It is a comprehensive
transformation that touches on:

•	 Process: Adopting streamlined workflows like Trunk-Based Development and Continuous
Integration to enable the smooth flow of value.

•	 Technical Discipline: Committing to rigorous practices like Test-Driven Development that build
quality and good design into the code from the very beginning.

•	 Culture: Fostering the XP values of communication, feedback, and courage, and embracing a
culture of shared responsibility where security and quality are everyone’s job.

This transformation is a journey, and Codurance specialises in guiding organisations through it. Our
expertise in software modernisation, platform engineering, and hands-on training in best practices
like TDD and CI/CD has a proven track record of delivering measurable results for our clients.

We help organisations not just implement tools, but build the underlying capabilities and culture
required for sustained, high-performance software delivery.

Contact us at hello@codurance.com to discuss how we can
support your journey to Elite Performance.

mailto:hello%40codurance.com?subject=

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 23

Appendices
A Layered Defence
DevSecOps CI/CD Tooling

Category Purpose Example Tooling CI Pipeline Stage

Secrets Scanning Prevents credentials like API keys,
passwords, and private tokens from being
committed to the version control system.

Gitleaks
TruffleHog
Snyk
Bearer

Stage 2 (Static Analysis) (Most Important)
Stage 5 (Package)

SAST (Static Application Security
Testing)

Analyses the application’s first-party
source code for security vulnerabilities
and code quality issues without executing
the code.

SonarQube
Veracode
Horusec
Invicti
Snyk
Checkmarx

Stage 2 (Static Analysis)

SCA (Software Composition
Analysis)

Scans the project’s dependencies to
find known vulnerabilities and license
compliance issues in the third-party and
open-source libraries being used.

Snyk
Dependency-
Check Black Duck
Trivy
Veracode

Stage 2 (Static Analysis)
Stage 5 (Package)

IaC Scanning (Infrastructure as
Code)

Scans infrastructure definition files for
security misconfigurations

Checkov
Snyk
TFLint
Terrascan
Trivy

Stage 2 (Static Analysis)

Container Image Scanning Scans the layers of a built container image
for known vulnerabilities in the base
operating system and any installed system
packages.

Trivy
Snyk
Grype

Stage 5 (Package)

DAST (Dynamic Application
Security Testing)

Tests the running application from the
outside-in by simulating external attacks.
It identifies runtime vulnerabilities and
configuration issues that static analysis
tools cannot see.

Detectify
OWASP ZAP
Invicti
Snyk
Beagle Security

Stage 6 (Acceptance Testing): Runs
against the application after it has
been deployed to a staging or testing
environment. It provides a “black box”
assessment of the application’s security
posture as it would appear to an
external attacker.

Infrastructure Testing Goes beyond static IaC scanning by
deploying the infrastructure into a
temporary, isolated environment and
running tests to validate its actual runtime
behavior, configuration, and security
posture.

Terratest Stage 6 (Acceptance Testing): Confirms
that the provisioned infrastructure is
working as intended (e.g., security
groups are correctly applied and
blocking traffic, IAM policies are
enforced, endpoints are reachable only
from expected sources).

SIEM (Security Information and
Event Management)

Aggregates and analyses log data from all
environments (including the CI/CD pipeline
and production) to detect suspicious
activity, correlate security events, and
facilitate incident response. Provides a
holistic view of the security posture.

Splunk
Datadog
Microsoft Sentinel

Consumes logs and events from all
stages, particularly Stage 6 (Acceptance
Testing) and Stage 7 (Production), to
provide real-time threat detection and
post-incident forensic analysis.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 24

Pipeline Maturity Assessment
Assessing organisational CI/CD readiness

Pipeline Maturity Checklist (Pre-Merge)
This checklist, in three sections (Pre-Merge, Post-Merge and Release), provides a consolidated
view of the key stages and considerations for building a high-performance CI/CD pipeline,
drawing directly from the pre-merge validation, post-merge validation, and release steps detailed
in the previous slides. Assess your organisation against each Key Capability to understand where
you can continue to improve.

Category Key Capability Description Implementation
Status

Triggers Automated PR/
MR Trigger

The pipeline is automatically triggered on every pull request
or merge request to provide immediate feedback.

Static Analysis Linting &
Formatting

Enforces consistent coding style and catches syntax
errors using automated linters and code formatters. Highly
language specific.

Static Analysis Secrets
Scanning

Scans code and commit history for inadvertently committed
credentials like API keys or passwords.

Static Analysis Static
Application
Security Testing
(SAST)

Analyses source code and infrastructure code for potential
security vulnerabilities before the code is compiled or run.

Build & Unit Test Reproducible
Builds

Code is built in a clean, containerised, and ephemeral
environment to ensure consistency and prevent “works on
my machine” issues.

Build & Unit Test Automated Unit
Testing

A comprehensive and fast suite of unit tests is executed to
validate the fundamental logic of individual code components.

Quality Gate Pre-Test
Quality Gate

The pull request or merge request is blocked from merging
if any pre-integration test checks (static analysis, tests, etc.)
fail.

Acceptance Test Automated
Environment
Creation

An ephemeral production-like environment is created for
further testing.

Acceptance Test Targeted
Integration
Testing

A targeted subset of Automated Integration Tests are
executed to validate the interactions between the changed
components and their external dependencies.

Quality Gate Post-Test
Quality Gate

The pull request or merge request is blocked from
merging if any integration test fails.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 25

Pipeline Maturity Checklist (Post-Merge)

Category Key Capability Description Implementation
Status

Triggers Automated
Deployment
Trigger

A merge to the trunk branch automatically triggers the
deployment pipeline, starting the process of releasing the
change.

Build & Package Immutable
Artifact
Creation

A single, immutable, and versioned release artifact (e.g., a
container image) is created to ensure consistency across all
environments.

Build & Package Container
Image Scanning

The final container image artifact is scanned for known
vulnerabilities in its base operating system and installed
packages. The artefact is prevented from progressing if any
are present.

Build & Package SBOM
Generation

A Software Bill of Materials (SBOM) is generated to create
a complete inventory of all software components and
dependencies.

Quality Gate Pre-Test
Quality Gate

The release is blocked from progressing if any Build &
Package step fails.

Acceptance
Testing

Automated
Staging
Deployment

The validated artifact is automatically deployed to an
ephemeral production-like staging environment for further
testing. Make sure to have automated data seeding
and destroy the environment after testing to prevent
contamination between tests.

Acceptance
Testing

Automated
Integration
Testing

Automated integration tests are executed to validate the
interactions between the application’s components and its
external dependencies.

Acceptance
Testing

Automated
End-to-End
(E2E) Testing

A minimal suite of critical end-to-end (E2E) tests is run to
validate key user journeys from start to finish.

Acceptance
Testing

Dynamic
Application
Security Testing
(DAST)

The running application is scanned in the staging
environment to find runtime vulnerabilities that are not
visible in the source code.

Acceptance
Testing

Infrastructure
Testing

Infrastructure tests are run to validate the actual state and
behavior of the deployed infrastructure.

Quality Gate Post-Test
Quality Gate

The release is blocked from progressing if any acceptance
test fails.

Pipeline Maturity Checklist (Release)

Category Key Capability Description Implementation
Status

Production
Deployment

Automated
Production
Deployment

Deployment to nightly, staging/QA and production is
automated, either manually triggered (Continuous Delivery)
or fully automated (Continuous Deployment).

Production
Deployment

Feature Flag
Enablement

Feature flags are used to deploy code to production with
new features disabled, allowing the business to control the
timing of the release to end-users, perform canary releases,
or conduct A/B testing.

Production
Deployment

Feature Flag
Environments

Uses feature flags to continuously deploy the latest release
to staging/QA/nightly environments. This ensures these
environments are never stale and allows incomplete
features to be tested by QA teams by enabling the flag,
while they remain hidden from production users.

Production
Deployment

Advanced
Deployment
Strategies

Advanced deployment strategies like Blue-Green or Canary
releases are used to reduce deployment risk and allow for
safe rollouts.

Elite Performance – Achieving Speed and Stability with CI/CD and DevSecOps 26

hello@codurance.com
www.codurance.com

Codurance is a global software consultancy that helps
businesses build a better, sustainable technical capability that
supports growth and innovation.

We build well-crafted, reliable, secure and easy to modify software
that minimises waste, and reduces cost and delivery times.

For more information visit: www.codurance.com

Follow us on social media:
@codurance

mailto:hello%40codurance.com?subject=
http://www.codurance.com
http://www.codurance.com
https://www.linkedin.com/company/codurance
https://www.youtube.com/@Codurance
https://www.instagram.com/codurance/
https://x.com/codurance

