
The Importance of Structure in Software

Jordan Colgan
www.codurance.com

Is writing ‘good’ code, 'clean' code ever enough in itself? What makes code good? You may
value the ability to read through the code and understand it, without having to compile and
run it. Others may value that, and also have the code prove its correctness through tests.

In the Software Industry, it is tediously repeated that programmers should value disciplines
and have pride that their code is self-documenting and self-proving [1]. These are not recent
discoveries or revelations either. Some of the first literature about software describe
approaches to proving then building computer programs, early predecessors to the practice
we know today as test-driven development.

During World War II, John Mauchly and J. Presper Eckert set out to develop America’s first
programmable computer, Electronic Numerical Integrator and Computer (ENIAC), with the
initial goal to automate artillery ballistic computations [2]. These ballistic tables were
originally being produced by humans, nearly 200 female clerks, who had been calculating
the tables with mechanical desk calculators prior to the development of ENIAC. Some of
these women were selected to program the machine that would replace them and their
colleagues. These clerks, turned programmers, used their practice of calculating the tables
manually first to drive the development of ENIAC, and also to narrow down bugs due to
failures within its physical components [3].

Ideas about manually checking the expected output of computer programs continued, with a
notable mention in “Digital Computer Programming” [4], from 1957:

The first attack on the checkout problem may be made before coding is begun. In
order to fully ascertain the accuracy of the answers, it is necessary to have a
hand-calculated check case with which to compare the answers which will later be
calculated by the machine. This means that stored program machines are never
used for a true one-shot problem. There must always be an element of iteration to
make it pay. The hand calculations can be done at any point during programming.
Frequently, however, computers are operated by computing experts to prepare the
problems as a service for engineers or scientists. In these cases it is highly desirable
that the "customer" prepare the check case, largely because logical errors and
misunderstandings between the programmer and customer may be pointed out by
such procedure. If the customer is to prepare the test solution, it is best for him to
start well in advance of actual checkout, since for any sizable problem it will take
several days or weeks to hand-calculate the test.

1



This sounds like the beginnings of acceptance test-driven development (ATDD1), where the
“customer” or someone representing the customer (business analyst, product manager, etc)
works together with a quality assurance engineer to produce a set of executable
specifications of how they expect the program to work. Prior to any feature development
having begun [5]. These executable specifications are then implemented by the developers,
as they build out the feature and use their passing state to mark it as ‘done’. ATDD is of
course a branch of TDD, a practice used by developers to drive out their own tests, separate
from the acceptance tests provided by the business and quality assurance.

Another notable mention of test based development is from NASA’s Project Mercury in the
1960s [6]. Independent test engineers wrote testing procedures, from the hardware
requirements provided, before the developers wrote the software to integrate with the
hardware. This allowed them to shorten the overall development time and increase the
parallelity of quality assurance. Compared to other software projects at the time, which were
beginning to be affected by the looming ‘Software Crisis’.

The exact discipline of TDD first started to form in 1993 [7], as ‘test-first programming’, which
then later became the more refined test-driven development we are familiar with today. Kent
Beck is credited with inventing TDD, but he refers to having rediscovered the discipline. We
can see why he would think this way, with valuing proof before implementation documented
throughout the history of software development.

TDD is just one part of the Extreme programming (XP) methodology. Conceived with the
intention to improve software quality and respond to the ever growing needs of business
agility [8]. Despite XP practices being an adopted toolset of many modern programmers, the
majority are yet to accept it as their own. This attitude against XP feels almost antagonistic,
considering that we are said to be in a ‘Software Crisis’.

The term ‘Software Crisis’ arose during the first NATO Software Engineering Conference in
1968 at Garmisch, Germany [9]. Edsger Dijkstra also made a reference to the same problem
in his 1972 Turing Award lecture [10]. The main outlines related to the software aspect are
low quality, inefficiency, and not meeting the desired requirements. In terms of the overall
project delivery, software projects typically exhibited problems of over-budget, over-time, and
low developer retention due to the software quality.

Although the software crisis was identified long ago, software built today still has the same
issues. It seems like a difficult argument to still call it a crisis, considering it has been going
on for so long. Why does software continue to fail and fail again? To answer that question,
we first need to understand the values of software.

The Two Values of Software

What exactly is Software? “Britannica” offers the following definition [11]:

1 ATDD is also Behaviour Driven Design (BDD). BDD is often mistaken to mean using the Gherkin
syntax (Given, When, Then), but this is not true.

2



Software, instructions that tell a computer what to do. Software comprises the entire
set of programs, procedures, and routines associated with the operation of a
computer system. The term was coined to differentiate these instructions from
hardware—i.e., the physical components of a computer system. A set of instructions
that directs a computer’s hardware to perform a task is called a program, or software
program.

Software was invented to change the behaviour of machines, the hardware. The reason as
to why is held in the word “hardware”, meaning hard to change. It takes enormous effort and
resources to design and build hardware, therefore we cannot spend anymore time trying to
change it for various other reasons. Software promised the ability to easily change the output
for hardware it ran on. From this, we can conclude that a value of software is its “behaviour”.

What would the other value of software be then? That would be how we share the
instructions the software performs, the architecture. Architecture in the software world is
difficult to provide a definition for. Quite often it is associated with just the high level overview
of how components interact with each other, but it is much more than that [12]. It is
everything, from the high-level decisions to the low-level details. Architecture is the
continuous growing shape of the system. Therefore, the second value of software is its
“structure”.

Which is more important? Is it the behaviour, the structure, or are they both equally
important? If you were to ask developers which were more important to them, they would
most likely answer behaviour. Programmers are hired to change the way machines behave,
in order to make or save money for their stakeholders. Therefore, many programmers
assume their default priority is behaviour, as it can seem like the entirety of their job. It is
their responsibility to implement the requirements and fix any mistakes in the softwares
functionality.

If you were to ask the stakeholders, managers, and anyone on the ‘business’ side what the
value of software is to them, they of course would answer behaviour. To them, the process
looks like providing the developers with functional specifications and requirement
documentation, to which the developers somehow work the machines into what they asked
for, eventually. Without their requests, the programmers would not have a job to do.

So far, it seems obvious that it is more important for the system to work than it is for the
system to have sound structure. However, consider again that the whole reason software
was invented was to easily change the behaviour of the hardware. The purpose of software
is to be soft, easy to change. Software that is easy to change the structure of can easily be
made to work. That is, software that is easy to change can keep up with the ever changing
requirements from the business.

Software that works, but suffers bad structure that is hard to change, results in an unwanted
situation in which the software struggles to meet requirements. When the business wants to
add new features or extend existing ones, it takes too much time to rework the system to
meet the new business requirements. Even worse, software that cannot be extended due to
the tangled mess is seen as useless and loses its value to the business. The business only

3



sees programmers as being valuable due to their ability to make the machines do as they
ask. When programmers lose control of the software, then they too lose their value.

You, as a developer, may realise the importance of structure by now, but how do you
convince your manager or the business that structure is more important than behaviour?
Consider the business and their competitors. The software you write for the business has
better features than their competitors. You are able to get these features out quicker, but only
because you cut corners with the quality of the software. Of course, you say to yourself, you
will go back and make it better. Your competitors however do care about quality and they
insist on making the software the best structure they can as they go along, but this makes
them slower.

What happens when you cut corners on the software quality, and promise to go back and
clean it? You convince yourself that someday you will make it better, someday you will fix the
hacks made. That someday will never come [13]. Even if you do find yourself with the
opportunity to present the idea of going back to rectify the mistakes, you will find that the
priorities have moved away from the area. Of course, this is the nature of software and the
world of ever changing requirements.

Your software that once had the features that made you the market preference, has now
been overtaken by your competitors. Their structure allowed them to catch up to your
features, and it even encouraged the change required to go beyond what you had.

Programmers face a dilemma. The architecture of their system is more important than the
urgency of the functionality required of it. For without the ability to respond easily to change,
they can’t consistently deliver and sustain business needs. The business does not have the
knowledge to understand why architecture matters and why time must be spent caring for it.
Therefore, it is up to the programmers to learn and master the techniques required of them
to maintain sound structure.

Bridging the Gap between the Code and Business

Architecture of a system supports the intent of the system. Although the architecture is more
important than the behaviour for agility purposes, it’s the behaviour of the system that
influences the shape of the system. An ecommerce platform will have an entirely different
architecture to that of a social network.

The act of translating the requirements into code is known as domain modelling [14]. Domain
models act as the link between the ubiquitous language forming the requirements in the
code and the executable binary the machine processes. Even if the domain is a real world
tangible concept, the model is still our artificial representation in the world of data. It
comprises the unique abstractions, knowledge, and processes the business utilises within
the machine.

Domain models are often where software structure collapses. Programmers work in details,
low-level details. They care about frameworks, interfaces, concurrency, optimisation, just to

4



name a few. While these are important, they are not things the business understands or
cares about. When programmers try to build domain models without guiding principles that
ensure inversion from low-levels2, they often mix in their concerns with the businesses.

It just isn’t the programmer level where modelling fails, many high-level actors and
operations can impact decisions that result in poor domain modelling. Multiple models will
exist in organisations with large codebases, from monoliths to scattered repositories that
connect to each other. Different models will have different contexts, but some of these
models can be the same yet will be independently worked on. Miscommunication between
the teams involved will result in subtle interpretations within models, meaning those models
can’t be shared. Duplication is the enemy of software and difficult to fix.

Is unreliable, convoluted, and duplicated software just the nature of large codebases with
many teams or are there ways to rectify? Models are applied in contexts, the context being
an area of the codebase or the features being worked on by a team. Model harmony can
exist and scale with developer or business operations. It requires intercommunication, not
only amongst the teams but also in the codebase. Model scopes are defined as bounded
parts of the software system, representing the limits of where the model will apply and its
ownership.

The product of defining the boundaries within the organisation and teams, and specifying
usages within the system, are known as ‘bounded contexts’. Bounded contexts provide
teams clarity and encourage shared understanding of what needs to be cohesive and the
potential coupling by other contexts. There is a better understanding of when to use the
same model and when not to. It also brings awareness of trade-offs of sharing, which helps
during the processes of team collaboration. Team synergy will most likely fail if everyone
does not understand where the bounds of the model contexts lay.

How do you manage bounded contexts? There are many nuances around different types of
software systems, but consider a medical institution who initiates an internal project for
appointment bookings. This project seeks to automate the process of booking with
practitioners, rather than patients having to manually organise them through receptionists.

What would the bounded contexts look like for the model of this application? There is
already an existing model with the legacy booking system used by receptionists. This system
is maintained by a team, who have been directly influencing the model. Another team is
required for the new user facing booking application. Their expected model will have
similarities to the existing model, but there are some discrepancies based on use cases they
have discovered.

The bookings from the new application need to be passed to the legacy booking system. An
agreement was made between the teams that a new model would be formed from the legacy
model. Therefore the legacy system is outside the boundary. Translations will be required
between this new model and the old. The responsibility of these translations falls upon the
legacy team, since contexts are traversing outside the agreed upon boundary.

2 Also known as the “Dependency Inversion Principle”. Mistakenly thought to only apply to
Object-Oriented design, but it represents a much higher level design principle.

5



In our example, the teams decide on a monolithic codebase to house both of their
implementations. Does this mean bounded contexts are modules? It could be interpreted
that the bounded contexts are the same as modules, since each team has their own
modules and sub-modules, but bounded contexts and modules have different motivations.
Modules are programming language paradigms, and bounded contexts must be agnostic to
such paradigms. The purpose of modules is to organise different elements within a model.
They don’t always communicate clearly the intention of separated contexts.

Bounded contexts are just a part of the steps towards better team topology and code
cohesion. There are other strategic design patterns along with bounded contexts, forming
what we know as Domain Driven Design (DDD) [15].

The Constant Pursuit of Quality

Good structure enables good behaviour, throughout both the software and the people. Bad
structure obstructs good behaviour. Flexibility for ease of change must be in from the very
beginning of system implementation. Without keeping the structure clean, we are setting
ourselves up to never follow the path of sustainable development.

How good is good enough? There are many metrics we can use to measure code quality,
cohesiveness, and agility. As much as software has the property of change, so do our tactics
and approaches to its development and maintenance. The best attitude that you can have is
to always be in the constant pursuit of quality. From the Programmers Oath [16], the second
promise is:

The code that I produce will always be my best work. I will not knowingly allow code
that is defective either in behaviour or structure to accumulate

Improving software structure is hard. It requires many years of intricate knowledge, spanning
many different fields in computing. Not only is deep theoretical knowledge essential, but vast
practical experience is crucial. As one must pursue a constant high quality software
structure, so should they also pursue a high quality in their own skills and knowledge.

6



Professional developers must place great importance on the structure of code over the
behaviour. Software has been, and will probably continue to be, a fast accelerated realm in
our world. Demands for developers are high, and demands for developers to be quick is
higher. Not every developer has the privilege to learn that the only way to go fast is to go
well. Therefore, it is our duty as those who know to guide those who do not.

The strong should aid and protect the weak. Then, the weak will become strong and
they, in turn, will aid and protect those weaker than them. That is the law of nature.

-Tanjiro Kamado

7



References

1. Martin, Robert C (2008). Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson. ISBN 9780136083238.

2. Light, Jennifer S (1999). "When Computers Were Women". ISSN 0040-165X.
3. Fritz, Barkley W (1996). "The Women of ENIAC". IEEE Annals of the History of

Computing. doi:10.1109/85.511940.
4. McCracken D D (1957). Digital Computer Programming. John Wiley & Sons. ISBN

9780471582458.
5. Pugh, Ken (2011). Lean-Agile Acceptance Test-Driven Development: Better Software

Through Collaboration. Addison-Wesley. ISBN 978-0321714084.
6. Larman, C and Basili, VR (2003). "Iterative and incremental developments. a brief

history" (PDF). Computer. doi:10.1109/MC.2003.1204375.
7. Beck, Kent (2002). Test-Driven Development by Example. Vaseem: Addison Wesley.

ISBN 9780321146533.
8. Beck, Kent (1999). Extreme Programming Explained. Addison-Wesley Professional.

ISBN 9780201616415.
9. Naur, P and Randell, B (1969). “Software Engineering: Report on a Conference

sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th
October 1968”. Scientific Affairs Division, NATO.

10. Dijkstra, Edsger W (1972). “The humble programmer”. Communications of the ACM
15.10.

11. Britannica, The Editors of Encyclopaedia (2023). "software". Encyclopedia Britannica.
12. Martin, Robert C (2017). Clean Architecture: A Craftsman’s Guide to Software

Structure and Design. Pearson. ISBN 9780134494272.
13. Kondo, Marie (2014). The Life-Changing Magic of Tidying Up: The Japanese Art of

Decluttering and Organizing. Clarkson Potter/Ten Speed. ISBN 9781607747307.
14. Evans, Eric (2003). Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison-Wesley Professional. ISBN 0321125215.
15. Fowler, Martin (2014). “BoundedContext”. Martin Fowler.
16. Martin, Robert C (2015). “The Programmer's Oath”. The Clean Code Blog.

8


