
Matheus Marabesi, Emmanuel Valverde

An essay from
practitioners

COMMON
PATTERNS
THAT MAKE
TDD HARDER

Matheus Marabesi, Emmanuel Valverde
2023

An essay from
practitioners

COMMON
PATTERNS
THAT MAKE
TDD HARDER

Every programmer knows they should
write tests for their code. Few do.

Kent Beck and Erich Gamma

TABLE OF CONTENTS

Foreword	 8

Acknowledgments	 9

Contact Us	 10

License	 10

Preface	 10

Who Should Read This Book?	 11

Introduction	 12

Book Structure	 16

A Note Before Starting	 17

A CASE FOR TDD ANTI-PATTERNS	 19

The Survey	 19

Methodology	 19

Results	 20

Professional Background	 20

TDD practices on the daily basis	 23

TDD practices at companies I worked at	 25

Anti-Patterns	 28

LEVEL I	 34

The Operating System Evangelist	 34

The Lutris Project	 35

Points of Attention	 37

The Local Hero	 37

Points of Attention	 41

The Enumerator	 41

Points of Attention	 43

The Free Ride	 43

The Puppeteer Project	 43

The Jenkins Project	 46

Points of Attention	 48

The Sequencer	 48

Points of Attention	 50

The Nitpicker	 50

Laravel Assertions	 50

The AWS CloudFront URL Signature Utility Project	 52

The Metrik Project	 52

Points of Attention	 53

The Dodger	 53

Points of Attention	 59

The Liar	 59

Async Test with Jest	 60

Points of Attention	 61

The Loudmouth	 61

The Testable Project 	 61

Points of Attention	 63

LEVEL II	 65

The Success Against All Odds	 65

Refactoring Success Against All Odds	 68

Points of Attention	 70

The Stranger	 70

The Hidden Dependency	 72

The Vuex Dependency	 73

The Database Dependency	 75

Points of Attention	 76

The Greedy Catcher	 76

The Laravel/Cashier Stripe Project	 77

Parsing the JTW token with JavaScript	 77

Points of Attention	 79

The Peeping Tom	 79

The Secret Catcher	 82

Points of attention	 84

LEVEL III	 86

The Giant	 86

The Nuxtjs Project	 86

Points of Attention	 88

The Excessive Setup	 88

The Nuxtjs Project 	 89

The Testable Project	 91

Points of Attention	 93

The Inspector	 93

The Git Release Bot Project – Exposing Details	 93

Inspecting Code with Reflection	 95

Points of Attention	 96

LEVEL IV	 98

The Mockery	 98

Points of Attention	 100

The One	 100

The Jenkins Project	 102

The Generous Leftovers	 103

Points of Attention	 104

The Slow Poke	 106

Points of Attention	 106

CONCLUSION – PATTERNS THAT MAKE TDD HARDER	 107

What the Experience Has to Say	 108

Where To Go From Here	 109

Appendix	 110

About the authors 	 112

8

Common patterns that make TDD harderINTRODUCTION

Foreword

It has been almost 20 years since Kent Beck presented his “rediscovery” of Test
Driven Development (or TDD as it is more commonly known) and published his
subsequent book, Test Driven Development: By example.

My journey began while reading Growing Object-Orientated Software Guided By
Tests by Nat Pryce and Steve Freeman. I could not help but think that having this
book that Matheus Marabesi put together back then would have been very useful.
Many of the patterns Matheus presents in this book I have experienced myself
through working with different software development teams over the years.

Since Kent Beck’s “rediscovery,” there have been many publications, conferences,
podcasts, and other media that extol the virtues of TDD. However, far less focus
has been made on testing patterns that can slow down development over time
and inhibit wider adoption. The patterns presented in this book by Matheus, and
the accompanying code examples, can be used as guardrails for implementing
TDD and maintaining a suite of automated tests. In that regard, this book is a
useful resource to ensure you can maximize the benefits that TDD can bring.

Matt Belcher

9

Common patterns that make TDD harderINTRODUCTION

Acknowledgments

Putting together a book like this was challenging. It involved gathering
information from open-source projects and practitioners who work with test-
driven development daily. Throughout the life of this work, many people have
contributed to its content by providing feedback and sharing their time and
wiliness to help.

I would like to start by especially thanking Codurance for making the space and
the effort to put together an environment that fosters continuous learning and
sharing back with the community.

This book is also an outcome of a series of talks Codurance and I gave regarding
TDD anti-patterns which ignite this more formal approach. A big thanks to Helena
Abellán for all her hard work behind the scenes, gathering all the information
needed, and making the video series a success.

A special thanks to all those who participated in the video series and
collaborated: Cameron Raw, Giulio Perrone, Juan Pablo Blanco, Javier Martínez
Alcantara, Sofia Carballo, Ignacio Saporitti, and Pablo Díaz.

Matheus Marabesi
March 2023

10

Common patterns that make TDD harderINTRODUCTION

Contact Us

If you found any issue with the content or want to reach out to provide feedback,
please follow this google forms link.

License

The content in this book is under the Attribution 4.0 International (CC BY 4.0)
license.

Preface

The idea of writing test code before the production code (or as a some might
refer to it “real code”)1 brings some mixed feelings for those experienced
practitioners. This is brought about by the feeling that “it does not make sense to
write code to test code.” In extreme scenarios, practitioners might think they are
clever enough or experienced enough not to waste time writing test code.

Once this first stage passes, slowly the buy-in happens. It isn’t easy to change the
way we work. It requires effort and the willingness to experiment with new ways
of working. In the end, we have all been there. Writing some code and seeing it
worked the first time it ran was considered a success.

After all the negation for a test-first approach and understanding that it might help
in the development flow (by preventing regressions), the final stage is reached:
accepting that writing tests help in the long run as it builds a safety net for
practitioners to create software.

That acceptance is just the first step practitioners will take on the road to
mastering TDD, a challenge in itself.

On that path, practitioners will face many scenarios in which testing is required
and will face many challenges, trade-offs and potential pitfalls along the way.

For example, you may want to ensure that a suite of tests continues to run as fast
as possible2 to ensure a short feedback loop. Whilst, on the other hand, you may
also want to avoid lengthy tests that aim to test everything in a single test case.

In this sense, at Codurance we are trying to give a new way of looking at different
anti-patterns that practitioners might face when writing testable code (or trying to).
This book is the result of that initiative.

1	� Production code is used to point to the code that will be executed when the users interact with the application;
practitioners could also refer to that as the “real” code.

2	� Running 1000 tests in 1s by @marvinhagemeist: https://marvinh.dev/blog/running-1000-test-in-1s.

https://forms.gle/FHfrLpW3apwfEUWd7
https://creativecommons.org/licenses/by/4.0
https://codurance.com
https://marvinh.dev/blog/running-1000-test-in-1s

11

Common patterns that make TDD harderINTRODUCTION

Who Should Read This Book?

This book is aimed at practitioners who want to explore particular testing patterns
that, when followed, can make TDD harder and, consequently, perceive that the
tests are not adding value to the development cycle. Throughout the book, an
attempt is made to expose the pain points that can lead to practitioners feeling
this way, with examples and how to avoid those when writing test code or
production code. As we will see, both are highly connected.

It is likely that you have some experience in writing code in a test-first manner but
along the way, have experienced issues with the following:

•	 Not perceiving the value of the tests

•	 Spending more time debugging tests than using them as a guide

•	 Waiting too long to receive feedback from tests

•	 Disparity between the test feedback and production code

However, even if you have limited prior experience in writing test code first, you
will still find something valuable to take from this book. Hopefully, you will find
patterns to avoid when writing test code in the future.

Whilst this book is not necessarily intended for practitioners who already know the
TDD anti-patterns, such as how to approach difficult scenarios to progress while
developing code-guided by tests, it may still be of interest to you.

Effort has been made to make the content as beginner friendly as possible,
however, the content used shows different patterns, programming languages, and
frameworks. Each chapter offers extra resources to go deeper into a particular
subject if needed.

In order to get the most out of this book, it is recommended that you feel
comfortable and understand the concepts and methods being presented.

Take time, if needed, to refresh the following topics, which will be covered and /
or discussed in the book:

•	 Object-Oriented Programming

•	 Web development (HTML, JavaScript, and the respective frameworks such
as VueJs and ReactJs)

•	 Testing frameworks such as Junit, PHPUnit, Jest

Last but not least, this book is best viewed as expert recommendations as
opposed to definitive “best practices”.3 This makes it easier to avoid the

3	� Since “best practices” is context-dependent and usually, the context is difficult to share when using the term
“best practices” it can be more of a hindrance than a help. In its place term “sensible defaults,” depicted in the
Technology Podcast by Thoughtworks: Starting with sensible default practices available at
https://www.thoughtworks.com/en-es/insights/podcasts/technology-podcasts/sensible-defaults.

https://www.thoughtworks.com/en-es/insights/podcasts/technology-podcasts/sensible-defaults
https://www.thoughtworks.com/en-es/insights/podcasts/technology-podcasts/sensible-defaults

12

Common patterns that make TDD harderINTRODUCTION

“one solution fits all” ideology. It is also a much closer description of our
recommendations based on our experiences practicing TDD in the industry
combined with the survey we conducted to obtain insights from other real-world
practitioners.

The formatted content here attempts to contribute and share back to the wider
community. You may have experienced different scenarios that aren’t included in
this book, which we accept. As stated in the previous paragraph, this book is a
culmination of our experiences and those who participated in the survey.

If you are looking for an exhaustive step-by-step, recipe-style guide of patterns,
this book is not that.

Introduction
One of the biggest challenges for practitioners is to keep going with the test-
first approach. Often, projects are not set up for testing, and teams lack a strong
culture of testing, as a result: little or no automated tests (whether it is TDD4, TLD,5
or any kind of approach, really). Accelerate, Radziwill (2020) already shared that
high-performance teams use automation, and TDD is important as a practice to
enable that.

In the context of software development as a whole, the test-first approach is really
just in its infancy compared to software that was built previously. The premise was
that software would always work; that’s why no test beforehand was needed. Write
the production code, compile it and try it out. If it worked, great! Maybe a few more
cases? And then we can move on. That was often the cycle that followed.

Some of those practitioners had to build the culture themselves, building the
mindset from the ground up in their teams.6 Often it is a good idea but can
be difficult to maintain long-term. For example, if you are trying to push for an
alternative working style and your peers fail to recognize the value in that. In
this situation, without the support needed, the easiest approach is to just drop
the cause and maintain the habit of writing code and completing manual tests.
In the end, going back to the development style we all have been used to for
developing applications.7

4	 Test Driven Development.

5	 Test Last Development.

6	� Julio César Pérez shared his experience facing this scenario, where he reported that team members resisted
adopting a test-first approach. You can see the blog post available at https://www.codurance.com/es/publications/
una-historia-de-testing.

7	 TDD is often mixed with bug-free code, which is not necessarily correct (Dijkstra and others 1970).

https://www.codurance.com/es/publications/una-historia-de-testing
https://www.codurance.com/es/publications/una-historia-de-testing

13

Common patterns that make TDD harderINTRODUCTION

On the other hand, various practitioners and teams have adopted Test Driven
Development (TDD) as a way to deliver a new feature, install shorter feedback
loops and avoid regressions for existing functionality.

Kent Beck (2003) popularised this methodology, which went onto become an
industry standard. Not only that, but others have since improved and built on this.

Starting with TDD is not easy and it requires constant maintenance to ensure,
for example, that a test suite is able to run fast. Codebases that tackle business
problems require a non-trivial amount of code, and with that, an accompanying
set of non-trivial set of test cases.

To tackle business needs, different types of tests are required. The test pyramid8
described in the book Succeeding with Agile by Mike Cohn (2009), and later on
referenced by Vocke (2018), suggests the following:

1.	 Having a solid base of unit tests, which ideally run as fast as possible and
provide fast feedback.

2.	In the middle we have integration tests that can be slower than unit tests
but provides feedback if smaller pieces are working as they should

3.	Finally, we have the end-to-end tests (depicted as UI Tests), also
references as tests that act as if they were a user (be it a human or
another system/program)

Based on the data gathered in this book, it seems that this approach of having the
test suite with a pyramid shape is not the case for professional projects.

The Test Pyramid from Mike Cohn (2009)

The patterns covered here suggest that there is a misconception about how best
to split the type of tests and their responsibilities. For example, the unit test is

8	� It is worth mentioning that this same pyramid was cited by Ham Vocke on Martin’s Fowler blog
https://martinfowler.com/articles/practical-test-pyramid.html.

https://martinfowler.com/articles/practical-test-pyramid.html

14

Common patterns that make TDD harderINTRODUCTION

often referred to as a one-to-one relationship between test and production code.9

However, what is often found in the industry is, in fact, the opposite. Usually (despite
the age of the aforementioned Test Pyramid), automated test suites are typically
comprised of a greater number of slower tests rather than faster tests. In effect,
more integration and end-to-end tests than unit tests. Thus leading to the Ice
Cream Cone pattern instead of the Test Pyramid.

The problem with having this Ice Cream test suite pattern instead of the Pyramid
is the pain that practitioners feel in maintaining those tests while also maintaining
the delivery rate.

The Ice Cream Cone – also referenced by
https://alisterbscott.com/kb/testing-pyramids/#site-header

Besides that, Wang, Pyhäjärvi, and Mäntylä (2020) describe that the industry as a
whole has an immature test automation process leading to slow feedback. While we
recognise the importance and necessity of testing software, we also acknowledge
that the industry does not always embrace effective or efficient test processes.

Another subject that is observed is the misconception of code coverage10, which
is a metric that managers often use to force practitioners to write automated tests.

However, this metric alone is not a good measure of success or, indeed, of good
testing practice. For example, practitioners may decide to write automated tests
in such a manner that the tests exercise the most lines of code through the least
number of tests. Rather than following a TDD approach with a large number of
smaller tests. Even though when asked, they do not agree with such a strategy.

9	� It appears in test cases that are written with Oriented Object Programming in mind, one test class means one
production class.

10	 �https://marabesi.com/thoughts/2021/05/29/on-100-percent-code-coverage.

https://alisterbscott.com/kb/testing-pyramids/#site-header

 https://marabesi.com/thoughts/2021/05/29/on-100-percent-code-coverage

15

Common patterns that make TDD harderINTRODUCTION

In that sense, later on we will go over an anti-pattern that can occur through this form
of chasing test coverage.

This doesn’t imply that code coverage is entirely without merit, as it does have a role
in the development process, as Mauricio Aniche (2022) suggests.

Looking at the subject of interest here, as recent as it sounds, more than ten years
ago, some efforts were made to put together some of the pains practitioners suffer
when trying to write code guided by tests. James Carr (2022) devised a list of anti-
patterns to look at and keep under control to avoid the ice cream cone test suite
pattern that extensive code bases might fall into.

Later on, a thread for voting was created at StackOverflow11 to open the discussion
and allow practitioners to contribute to the list.

More recently, Dave Farley also went through a few of them on his YouTube channel
and elaborated on what he called When TDD goes wrong (Farley 2021) in an attempt
to depict the pains that practitioners can find while doing TDD in a non-optimal
fashion. Most examples used there are extracted from open-source projects and
fictional examples based on real-world projects. This strategy was deliberate and
was used to give the viewer a gist of those anti-patterns and depict that such a
scenario happens daily.

Despite the great content delivered by Farley, the examples weren’t a comprehensive
list, nor were they based on what practitioners understand about the TDD anti-patterns.
Instead, it was his interpretation of the issues found when not practicing TDD in the
“correct way” (thus the title “When Test Driven Development Goes Wrong”).

Yegor Bugayenko (2021) also tried to go over the TDD anti-patterns space, and he
brought more topics to the table than what was presented by James Carr, adding a
few more anti-patterns when compared with the original list.

This paved the way for this book, which offers comprehensive examples for each
anti-pattern in the list. Not only that, but this book also presents two additional anti-
patterns based on the experience of observing practitioners using TDD daily.

Throughout this journey, the mind map depicted below was created to visualize the
related subjects and covered here.12 It might help to see the extent to which the anti-
patterns depicted here related to other areas while practicing TDD.

11	 https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue.

12	 You can see and interact with it by accessing the following link https://bit.ly/3yumaBI.

https://neverworkintheory.org/2022/05/24/aniche-testing.html
https://www.youtube.com/watch?v=-4Ybn0Cz2oU
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://bit.ly/3yumaBI

16

Common patterns that make TDD harderINTRODUCTION

Mindmap around patterns that make TDD harder.

Book Structure

The book is divided into four levels in total (I – IV) that group the anti-patterns.
Each level was designed to depict the progress of a practitioner starting to learn
TDD today. This means that level I is more likely to present issues faced by those
just starting on a TDD journey. Whereas IV covers some more advanced patterns
as the practice of writing tests evolves.

Of course, this can also bring some mixed feelings based on the context in which
they happen; some practitioners might have faced issues at the level I later on
when they already had some experience writing tests, which is fine as well.

The reason behind the levels is for presentation purposes only. Here, we
formatted the content in a way that could be followed in a structured way that
allows the readers to relate to their day-to-day practices easily.

17

Common patterns that make TDD harderINTRODUCTION

A Note Before Starting

Before diving into the book, remember that the code and examples used here
are for soley educational purposes and not intended to assign blame or illustrate
what not to do. Having a codebase with more than one of the patterns listed
here is more than common, and if you haven’t seen any of those yet, the time will
hopefully come.

The objective here is to shed light on what this can be and, through awareness,
try to allow practitioners to manage such potential patterns that often make test
driving code harder.

A Case
for TDD
Anti-
Patterns

19

Common patterns that make TDD harderA CASE FOR TDD ANTI-PATTERNS

In this chapter, we will go over the data collected from practitioners that work
daily on software projects across the globe.
Despite having the survey open for everyone to answer, in this edition, we focused
on Spanish communities, this had an impact in the data that we are showing here.

The Survey

Before moving any further it is important to make some clarifications around the a
survey that was made and what it means for this book.
As we will see in the next section the methodology used lacks a formal process
even though it is reproducible.

Furthermore, whilst the data collected in its raw form is available on GitHub13 as
a gist, keep in mind that sensitive data such as email addresses are not included.
As such the question “If you want to be notified when the results are published,
leave your email address on the box that follows.” is empty for all entries.

Methodology

A survey was created containing the questions attached in Chapter 13. The form
was created using google forms14 and the survey was publicly available from
September 2022 until November 2022.
The first recorded answer was on September 14 2022 and the last being on
November 14 2021.
In order to share the survey to as many people as possible, Twitter and Slack
were used to diffuse the survey.
To reach different communities and find as many practitioners as possible, some
of the following crafters communities were specific targeted to share the survey:

• Bilbao
• Murcia15
• Tenerife
• Barcelona16

These communities of crafters are under the umbrella of a global community, here
we named a few that are from Spain, but, the slack channel17 holds many others

13	 https://gist.github.com/marabesi/03e6629adc9d8324a582813905848e44.

14	 �https://www.google.com/forms.

15	 �https://www.meetup.com/es-ES/Software-Craftsmanship-Murcia/.

16	 �https://www.meetup.com/es-ES/software-crafters-barcelona/.

17	 �http://slack.softwarecraftsmanship.org.

A Case for TDD Anti-Patterns

https://gist.github.com/marabesi/03e6629adc9d8324a582813905848e44
 https://www.google.com/form
 https://www.google.com/form
https://www.meetup.com/es-ES/Software-Craftsmanship-Murcia/
 https://www.google.com/form
https://www.meetup.com/es-ES/software-crafters-barcelona/
 https://www.google.com/form
http://slack.softwarecraftsmanship.org

20

Common patterns that make TDD harder

from around the globe.
Besides that there were an effort from the community to reshare and reach as
many people as possible18, and for that we leave here our gratitude in building
this together. Thanks for all people that participated.
In total, 142 answers were recorded and during the process practitioners also
shared they feedback regarding the questions made that will be taken into
account for further editions. The feedback was mainly regarding the clarity of the
questions that led people to confusion.
The survey was structured in four sections aimed to collect data in the following
areas:

• Professional background
• TDD practices on the daily basis
• TDD practices at companies I worked at
• Anti patterns
• Finishing up

In the next section, we will go over the results and some insights that this survey
gave, as in comparison with the previous edition, the insights and the target group
already shows that the practitioners are used to writing code following TDD.

Results

In this section, we go over the results produced by the survey shared with
practitioners. We will follow the same structure that the survey had, starting
with the results from Professional background, followed by the results in TDD
practices on the daily basis, TDD practices at companies I worked at and last but
not least: Anti patterns.

Professional Background

We surveyed to gather data on the TDD anti-patterns in the industry, and from
practitioners (but not limited to) that work for projects worldwide. We got 142 answers,
and the data shows that practitioners who answered the survey worked on projects in
different parts of the world but Spain got the highest number of practitioners:

• Spain – 96.5%
• United Kingdom – 21.1%
• United States – 21.1%
• Germany – 12%
• Mexico – 6.3%

18	� David Bonilla for example, reshared the survey in Twitter https://twitter.com/david_bonilla/
status/1570343666006097920.

A CASE FOR TDD ANTI-PATTERNS

https://twitter.com/david_bonilla/status/1570343666006097920
https://twitter.com/david_bonilla/status/1570343666006097920

21

Common patterns that make TDD harderA CASE FOR TDD ANTI-PATTERNS

I have no experience in professional projects
Less than one year
Between 1 and 3 years
Between 3 and 5 years
Between 5 and 10 years
Between 10 and 20 years
Between 20 and 30 years
30 years and more

36.6% 23.2%

14.1 %

7.7%
16.6%

The people who answered work on professional projects in the industry. There
were no answers for “I have no experience in professional projects”, therefore,
21.8% have between 1 to 5 years working on professional projects.
The majority of practitioners are between 5 and 20 years of experience (59.8%
in total), this points us to believe that the data sampled we have is based on
practitioners with a lot of experience in the industry.

Answers to the question “I am a software developer working in the industry professionally for”

We also found that the most popular programming languages that practitioners
work with professionally are:

• Javascript (71%)
• Java (63.4%)
• SQL (52.8%)
• PHP (46.5%)
• Typescript (44.4%)
• Python (35.2%)
• C# (33.8%)

Despite we see a variety of languages appearing in this sample surveyed:

Answers to the question
“I write/wrote code
professionally in the following
languages (programming
languages listed are from
https://www.tiobe.com/tiobe-
index)”

22

Common patterns that make TDD harder

I have no experience in professional projects
Less than one year
Between 1 and 3 years
Between 3 and 5 years
Between 5 and 10 years
Between 10 and 20 years
Between 20 and 30 years
30 years and more

31%

14.8%

20.4%

10.6%

1.4%
4.2%

17.6%

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

59.9%

31.7%

3.5%
3.5%

1.4%

A CASE FOR TDD ANTI-PATTERNS

You will find that most of the examples used in the following sections are in
javascript as well. We think this way will be easier to reach a broader audience and
give back to those that answered the survey. On the other hand, we also see other
languages showing up in the survey that are not as popular: Lua, Rust and Closure.

This point really contrasts a lot with other surveys like the stackoverflow survey,
which tells us that Rust (86.73%) is one of the most loved languages along with
Closure (75.23%)19.
In this edition we asked in a broader manner how many years of experience
respondets had.

Answers to the question “How many years of experience do you have doing Testing?”

We also found that people that answered the survey are familiar with different
testing tools such as Junit, Jest, PHPUnit or any other framework that
provides a common ground to write tests, it is worth sharing that all practitioners
marked this question as “Agree” or “Strongly Agree”.

Answers to the question “I am familiar with testing tools such as Junit, Jest, PHPUnit or any other
framework that provides a common ground to write tests.”

19	� https:survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scriptingand-markup-
languages.

https:survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scriptingand-ma
https:survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scriptingand-ma

23

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

13.4 %

15.5 %

17.6%

28.9 %

24.6%

For effective testing, knowing the tools and what is available for practitioners to
write tests is key. When it comes to anti-patterns, the knowlesge in such tools
become even more important, specially if we talk about tests life cycle and
cleaning up/tearing down dependencies.
For this survey context, having the majority of practitioners knowing their tools
points to a growing awareness of testing-first approach.

TDD practices on the daily basis

In this section, we will have a look at the practices that the people who answered
the survey follow when developing applications using the test first approach.
Given that most of the practitioners work on professional projects, the next
question tries to address how those people learned TDD to apply that to a
professional project.
When asked if people that answered the survey learned TDD at work, most of
them (40.1%) said that this is not the case, there is a split between Disagree 15.5%
and Strongly Disagree 24.6%.
In contrast, 46.5% reported that the work was the place that they learned TDD.

Answers to the question “I learned TDD at work.”

The follow-up question tries to focus more on which sources practitioners learn
TDD from and the majority of them (72.6%) said that they learned TDD through
books, videos courses or tutorials.
Further analysis is needed to dive into this point, given that practitioners are
learning TDD at work, a combination of sources along the work might be the
strategy adopted to learn TDD, and if not, how would the learning on TDD
develops?
This question also points to practitioners “informally”20 learning TDD, meaning
that from the responses, more than the half of them learned TDD alone through
video courses, books or tutorials.
Following the same trend, only 44.4% of the companies understand the pros and

20	Informally here means not having a certification or some institution that signs the knowledge on practicing TDD.

A CASE FOR TDD ANTI-PATTERNS

24

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

28.2 %

21.1 %

20.4 %

21.1 %

9.2 %

Strongly disagree
Disagree
Neutral
Agree
Strongly agree43.7 %

12.7 %

9.2%
5.6 %

28.9%

cons of TDD and use it as a practice. It is important to mention that the answers
come from practitioners and as such, this is a perception that they have regarding
the topic, further investigation is required to get more insights.

This question does not address the mix of all options given, potentially that could
be the case that practitioners mix different forms to learn TDD, for example,
watching a video course and also reading a book to fill in possible gaps.

Answers to the question, “I learned TDD myself, through books, video courses or tutorials.”

We also asked if the peers from the people who answered the survey knew TDD
and most of them (41.5%) answered that it was not the case and 21.1% remained
Neutral.

Answers to the question “People that I work/worked with already knew TDD.”

Related to the professional context of the practitioners we also asked if their
peers practice TDD on the daily basis and also if themselves work on writing tests
first.

A CASE FOR TDD ANTI-PATTERNS

25

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree18.3% 20.4%

31.7%

11.3%

18.3%

28.2%

15.5%

16.2%20.4%

19.7%

A CASE FOR TDD ANTI-PATTERNS

On the left, answers to the question “The people I work with practice TDD as part of
daily work,” and on the right side, answers for the question “I practice TDD as part of
my daily workflow.”

Related to that we also asked if adopting TDD had lead them to perceive a slow
down in their development whilst coding. This is often the case when practitioners
start to learn to test drive code. This is the case for hard skills, if we think about it
for any new piece of technology the start is the initial phase that takes longer to
get used to21.
58.5% disagree with this statement, in other words, most of the practitioners see
value in practicing TDD and they do not have the feeling that the practice slows
them down22.
Despite the survey, the well-known author Robert C. Martin (also known as Uncle
Bob) from the tech community who is the author of the book Clean Architecture
shared his adoption of using TDD, stating that “the only way to go fast is to go
well”.
Such a statement is aimed at the perception that TDD slows the developer flow
down as the benefit for testing drive code will not show immediately after writing
the test, but maybe in a refactoring in which the tests catch possible failures that
would have been noticed only in production by the end user.23

TDD practices at companies I worked at

Now we will go over more questions related to the environment in which the
practitioners work daily.
We started with the question “I am not allowed to push code for review without a
test case with it” and for such, a premise was assumed in which the practitioners

21	 https://bloomstaxonomy.net

22	�It is important to mention that this survey was shared via Twitter and Linkedin for people that are close to
communities that already have such familiarity with TDD.
This is a point of attention for the survey as a whole as it does not depict the state of the industry but rather a
small number of practitioners that work in the industry.

23	�“slow” and “fast” can be related to the codebase itself as well, but usually it is used in a way to avoid using
TDD as a practice.

26

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

23.2%

43%

10.6%

4.2%

19%

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

26.1 %
16.2 %

13.4 %

26.1%
18.3 %

work on a gitflow24 fashion instead of Trunk Based Development 25 26. Given that the
pull request is a popular method that practitioners use to ask for code reviews and
Trunk Based Development comes with other practices such as pair programming.

In that sense, we found that most of the practitioners agree with that (44.4%),
which we could explore a bit more why that is the case, are practitioners forced
by some hierarchy? Why is there a such restriction? Further exploration is
required for this topic.

Answers to the question “I am not allowed to push code for review without a test case with it.”

Related to that, we also asked if the companies that the practitioners work for
required TDD to join them. This time we see that Neutral has 19% which can point
to to people that do not work for any company or not recalling the hiring process
they went through.

If we combine “Strongly disagree” and “Disagree” we see that most of the
companies (66.2%) did not require TDD beforehand.

Answers to the question “The companies I work/worked at required TDD to join
them as part of the job description.”

24	�https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

25	�Dave Farley also shared his thoughts on why git-flow might be a bad idea
https://www.youtube.com/watch?v=_w6TwnLCFwA

26	�Trunk Based Development explained https://trunkbaseddevelopment.com

A CASE FOR TDD ANTI-PATTERNS

27

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

23.2 %

30.3 %

12 % 14.8%

19.7 %

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

34.5%

21.8%

5.6 %

12%26.1%

The next question tries to depict the work environment regarding practicing
TDD, as the previous question already sheds some insights on that (as most
companies do not require TDD as part of their job description); here, we see that
we potentially have a follow-up on that trend.

Most of the practitioners (60.6%) said that the company they work for does not
practice TDD.

Answers to the question “Companies I work/worked at do not practice TDD.”

Practitioners (35.2%) also shared that the companies that they work for have the
perception that tasks will take longer to complete if the team is using TDD. This
result could be related to the fact that more than 60% of practitioners answered
that their company does not practice TDD, as this could be one of the causes –
this insight requires further investigation.

Answers to the question “Companies I work/worked at argued that TDD requires more time to
complete a task and the teams didn’t have the required time to use it.”

Connected to that, we also asked if the company that the practitioners work/
worked for understand/understood the pros and cons of using TDD, and 44.4%
said that yes, it does.

A CASE FOR TDD ANTI-PATTERNS

28

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree12.7 %

15.5 %

18.3 %
28.2 %

25.4 %

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

28.9 %

34.5 %

9.9%

11.3%
15.5%

Answers to the question “Companies I work/worked at value the TDD practice and
acknowledge its pros and cons.”

This can be related to the previous question as a deliberate decision to not use
or use TDD in the software development process or as part of the recruitment
process.

Next up, we will go over the section that asks practitioners about TDD anti-
patterns. Even though there are four sections of the survey, This is the last section
used to gather data related to the topic of this book; the last section named
Finishing up, is aimed at collecting personal data.

Anti-Patterns

This section focuses on what is known as “TDD anti-patterns”, which aimed to depict
what the practitioners knew about them and to what extent given that TDD anti-
patterns are not a popular subject among practitioners.

To get started, the first question tried to see if practitioners could recall at least one
anti-pattern defined by James Carr. As the names of the cataloged anti-patterns are
not that familiar, this question shows that regardless of that practitioners can recall a
few of them, 53.6% of practitioners are unable to remember a TDD anti-pattern, and
only 33.8% claim to remember at least one.

Answers to the question “I can recall in my mind at least one TDD anti-pattern”

A CASE FOR TDD ANTI-PATTERNS

29

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

18.3 %
14.8 %

26.8%

20.4 %

19.7 %

The follow-up question was created to try to depict which anti-pattern the
practitioners that answered the survey could recall. The most popular was The
Excessive setup, followed by The Mockery.

Answers to the question “From the following list, check the anti-patterns you can recall.”

One of the pain points related to anti-patterns is
usually in the code base that practitioners work on,
but due to the lack of awareness, often those anti-
patterns are not spotted on a daily basis. From the
responses, 54.6% said that they could recall at least
one anti-pattern.

Answers to the question “I could spot at least one TDD anti-pattern in the code base I work/worked
on professionally.”

One of the pain points related to
anti-patterns is usually in the code
base that practitioners work on, but
due to the lack of awareness, often
those anti-patterns are not spotted
on a daily basis

A CASE FOR TDD ANTI-PATTERNS

30

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

32.4 %

18.3 %

7.7%

25.4 %

16.2 %

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

8.5 %

52.1 %

8.5 %

7.7 %

23.2 %

Regarding the question “I feel that TDD anti-patterns slow me down” 52.1%
remained Neutral, this potentially is related to the question “I can recall in my
mind at least one TDD anti-pattern” – If I cannot recall it is difficult to know if It
slows me down or not.

Answers to the question “I feel that TDD anti-patterns slow me down.”

The next question relates to a few anti-patterns that arise when the test is written
after the production (if any at all) which sometimes is not written leading to a code
base without tests.
Thus, when practitioners try to add some tests it slows them down in the process
to get something working with the test first. In total, 48.6% of practitioners agree
with that.

Answers to the question “When I tried to practice TDD in a code base without tests,
I felt that I was slowed down by writing the test first.“

Test coverage is a subject that usually is used to explore the code base and see
where the code lacks more test cases, as such, this is often a popular subject that
divides practitioners as it can be used in a not effective way.
Out of the practitioners that answered, 18.3% indeed are worried about coverage,
against 70.4% that disagree.

A CASE FOR TDD ANTI-PATTERNS

31

Common patterns that make TDD harder

Strongly disagree
Disagree
Neutral
Agree
Strongly agree33.8 %

36.6%

11.3 %

5.6 %

12.7 %

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

20.4%

31.7%

28.9 %
11.3%

7.7%

Answers to the question “I write tests because I am worried about the code coverage.”

Last but not least in this section we also asked if practitioners write tests because
the project they work on demands it. We found that 60.6% disagreed with such a
question.

This relates to the question “The companies I work/worked at, required TDD to
join them as part of the job description” as companies do not require TDD to be
in their recruitment process (as the Figure 7.11 depicts), it seems feasible that most
practitioners are not required to write tests for the project they are working on.

Answers to the question “I write tests, but without TDD because the project
I am working on demands tests.”

In this chapter, we went through the survey that was shared with practitioners to
gather data on the state of anti-patterns and we shared the results here and also
opened a few questions that will require further investigation.

A CASE FOR TDD ANTI-PATTERNS

32

Common patterns that make TDD harderA CASE FOR TDD ANTI-PATTERNS

How it was to gather the information

In the initial phase, we conducted polls on Twitter, considering that the audience
we typically engage with is associated with the realm of best practices. The aim
was to gauge people’s responses to some straightforward questions included
in the survey and to assess the potential reach if we were to share the poll. The
survey yielded an average response rate of 63.25%, suggesting that we could
potentially reach a broader audience compared to the previous edition.

However, this sample still seemed somewhat small. Recognizing the need for a
more comprehensive perspective, we decided to explore online communities on
Slack dedicated to software crafters. Simultaneously, we sought assistance from
individuals who could, in some way, enhance our reach, such as David Bonilla27
and CodelyTV28. This approach allowed us to strategically diversify and enrich our
outreach.

Now it is time to start diving into the anti-patterns one by one and see the impact
that they bring to practitioners while developing applications.

In the next chapter, we will start with the anti-patterns which practitioners that are
starting with the practice of TDD might face.

27	�https://twitter.com/david_bonilla/

28	�https://codely.com/

 https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
 https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

Level I

34

Common patterns that make TDD harderLEVEL I

Level I
The first level of this series relates to practitioners that just started to test-drive
their code. As you might have expected, this is also the section that has the
biggest number of anti-patterns compared to the others that follow.

One of the possible reasons for that is effectively how practitioners learn TDD
(here, we can also add any approach related to testing drive applications).

The answers of the survey show one key result: that practitioners learn TDD
informally.

Throughout this level, you will also see subjects related to:

•	 How depending on dependencies such as the operating system can harm
testability.

•	 Creating dependencies in which the test runs beyond the operating system
can also harm testability (for example, depending on the file system).

•	 Naming test cases are used to debug and quickly spot problems; naming
them randomly harms understandability.

•	 Favour adding new test cases instead of polluting a single test case with
many assertions.

•	 Avoid coupling test cases with the order in which they appear in a list (unless
the order has a meaning).

•	 While building assertions focuses on the specific properties that the test
needs instead of comparing an entire object.

•	 Focus on the desired behaviour instead of relatively simple actions such as
testing a selection from the database.

•	 Pay a closer look at async-oriented or time-oriented tests to prevent false
positives.

•	 Cluttering the test output with warnings or error messages (even when the
test is green) might lead to miss understanding; try to avoid that whenever
possible.

As there were many topics to go over, an effort was made to keep the sections
split from each other so that each section is consumable individually.

The Operating System Evangelist

A unit test that relies on a specific operating system environment to be in place to
work. A good example would be a test case that uses the newline sequence for
Windows in an assertion, only to break when run on Linux, Carr (2022).

35

Common patterns that make TDD harderLEVEL I

The Operating System Evangelist is covered in Episode 5 of the video29 series
covering the TDD anti-patterns hosted by Codurance.

The Lutris Project

The Operating System Evangelist is related to how coupled the testing code is
to the operating system; the coupling can be on different aspects of the code, for
example, using a specific path that exists only on Windows.

To depict such a case, the code snippet that follows was extracted from the open-
source project Lutris.30 Lutris aims to run games that are created for Windows on
Linux. The premise of the project already gives some expected constraints in the
codebase. The result is the following test case that launches a Linux process:

1	 class LutrisWrapperTestCase(unittest.TestCase):

2	 def test_excluded_initial_process(self):

3	 “Test that an excluded process that starts a monitored process works”

4	 env = os.environ.copy()

5	 env[‘PYTHONPATH’] = ‘:’.join(sys.path)

6	 # run the lutris-wrapper with a bash subshell. bash is “excluded”

7	 wrapper_proc = subprocess.Popen(

8	 [

9	 �sys.executable, lutris_wrapper_bin, ‘title’, ‘0’, ‘1’, ‘bash’,

‘bash’,

10	 ‘-c’,

11	 �“echo Hello World; exec 1>&-; while sleep infinity; do true;

done”

12],

13	 stdin=subprocess.DEVNULL, stdout=subprocess.PIPE, env=env,

14)

The test case relies on a bash shell to execute the test case, and as a result, it
would fail if we tried to execute it on a Windows environment, for example. Not
to say that it is bad; rather, this is a trade-off between the focus of the project and
the cost of having an abstraction on top of the underlying operating system.

In the end, for this specific scenario, we could argue that it is less likely that
Lutris supports another operating system that justifies the cost of maintaining an
abstraction.

29	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

30	�https://github.com/lutris/lutris/blob/f5e8e007b3e492be1fd07ca695ad6e0e25fab1d5/tests/test_lutris_wrapper.py

�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
 https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

36

Common patterns that make TDD harderLEVEL I

In their 2020 book, Cosmic python (Chapter 3)31 Harry Percival and Bob Gregory
shared the idea behind coupling and abstraction. In their book, they discussed
the idea of using the filesystem. Specifically, the file path and the implications
of using a path directly without taking into account any abstraction leads to a
coupled code (therefore harming testability as well).32

The Operating System Evangelist also appeared in the programming language
Go lang, in an issue that was trying to mitigate the new line character differences
between Linux and Windows operating systems. This issue is part of the definition
of this anti-pattern “A good example would be a test case that uses the newline
sequence for Windows in an assertion, only to break when run on Linux.” Within that
Github issue thread, a user shares the issues they are facing when needing to run
the same tests on Windows. She states that most errors are due to the difference
between the feed line code.

Issue from go lang repository, reporting frustration in handling feed lines in Windows and Linux.

Another anti-pattern related to The Operating System Evangelist is The Local
Hero. The Local Hero is known for having everything in place locally to run an
application, but as soon as you try to run it on another machine, it will fail.

We will discuss The Local Hero later on, but to reinforce how they are connected,
here is an example of Jenkins source code:

1	 @Test

2	 public void testWithoutSOptionAndWithoutJENKINS_URL() throws Exception {

3	 Assume.assumeThat(System.getenv(“JENKINS_URL”), is(nullValue()));

4	 // TODO instead remove it from the process env?

5	 assertNotEquals(0, launch(“java”,

6	 “-Duser.home=” + home,

7	 “-jar”, jar.getAbsolutePath(),

8	 “who-am-i”)

9);

10	 }

31	� Chapter 3, A Brief Interlude On Coupling and Abstractions.

32	�The example used can also be related to the strategy design pattern.

https://github.com/golang/go/issues/28822
https://github.com/jenkinsci/jenkins/blob/c3c5121ce1985113074900579e9d9370d717f29c/test/src/test/java/hudson/cli/CLIEnvVarTest.java#L63
https://www.cosmicpython.com/book/chapter_03_abstractions.html#chapter_03_abstractions
https://refactoring.guru/design-patterns/strategy

37

Common patterns that make TDD harderLEVEL I

This snippet is particularly interesting because whoever wrote it already noticed
some smell33 going on with the comment: TODO instead remove it from the
process env?

Interestingly enough, in the book The Programmers Brain, Felienne Hermans
(2021) shared that adding TODOs notes while coding helps programmers to
remember to come back and fix it; this is what she called to be a technique to
help the prospective memory.

Therefore, as she also highlights, usually, that is not the case. This kind of
comment tends to remain unsolved in a codebase for a long time.34

Lastly, coding katas are usually good places to catch these kinds of patterns early
on and push for an abstraction during the refactoring phase.

For example, The WordWrap35 is an example of a kata that aims to break into new
lines if the content is greater than expected. For an explanation of the differences
in feed lines and operating systems, check Baeldung.com post.36

Points of Attention
1.	 Avoid depending on the operating system; prefer to add an abstraction

whenever possible based on the context.

The Local Hero

A test case that is dependent on something specific to the development
environment it was written on in order to run. The result is the test passes on
development boxes but fails when someone attempts to run it elsewhere, Carr
(2022).

The Local Hero is covered in Episode 2 of the video37 series covering the TDD
anti-patterns hosted by Codurance.

The TDD anti-patterns precede the more recent rise of container usage in software
development. Before, it was common to have differences between the machine on
which the developer was working and the server on which the application would
run. Often, these environments were not the same; configuration specific to the
developer machine got in the way during the deployment process reaching the
production server and, as a result, crashed the system.

33	�Code smells are defined by the feeling that developers have while reading/writing code that something is not
correct.

34	�So, next time you face this situation, think twice instead of adding the TODO tag in the code!

35	�https://codingdojo.org/kata/WordWrap.

36	�https://www.baeldung.com/java-string-newline.

37	�https://www.codurance.com/publications/tdd-anti-patterns-chapter-2.

�https://www.codurance.com/publications/tdd-anti-patterns-chapter-2
https://codingdojo.org/kata/WordWrap
 https://www.baeldung.com/java-string-newline
 https://www.codurance.com/publications/tdd-anti-patterns-chapter-2

38

Common patterns that make TDD harderLEVEL I

PHP, for example, relies heavily on extensions that can or can’t be enabled on
the server. Extensions include threads, drivers for connecting to a database, and
many more.

In this case, if the developer relied on a specific version for the given extension,
the test would run successfully. Still, as soon as we try to run the suite on another
machine (such as a Continuous Integration server), it would fail.

Not only that, environmental variables can get in the way of testing too. For
example, the following code depicts a component that needs a URL to load a
survey (some of the code has been removed/modified intentionally and adapted
to fit the example – for more info, follow the GitHub link):

1	 import { Component } from ‘react’;

2	 import Button from ‘../../buttons/primary/Primary’;

3	

4	 import ‘../../../../scss/shake-horizontal.scss’;

5	 import ‘./survey.scss’;

6	

7	 const config = {

8	 surveyUrl: process.env.REACT_APP_SURVEY_URL || ‘’,

9	 }

10	

11	 const survey = config.surveyUrl;

12	

13	 const mapStateToProps = state => ({

14	 user: state.userReducer.user,

15	 });

16	

17	 export class Survey extends Component {

18	 /* skipped code */

19	

20	 componentDidMount = () => { /* skipped code */}

21	

22	 onSurveyLoaded = () => { /* skipped code */}

23	

24	 skipSurvey = () => { /* skipped code */}

25	

26	 render() {

27	 if (this.props.user.uid && survey) {

28	 return (

29	 <div className={`w-full ${this.props.className}`}>

39

Common patterns that make TDD harderLEVEL I

30	 {

31	 this.state.loading &&

32	 <div className=”flex justify-center items-center text-white”>

33	 <h1>Carregando questionario</h1>

34	 </div>

35	 }

36	

37	 <iframe

38	 src={this.state.surveyUrl}

39	 title=”survey form”

40	 onLoad={this.onSurveyLoaded}

41	 />

42	

43	 {

44	 !this.state.loading && this.props.skip &&

45	 <Button

46	 className=”block mt-5 m-auto”

47	 description={this.state.buttonDescription}

48	 onClick={this.skipSurvey}

49	 />

50	 }

51	 </div>

52);

53	 }

54	

55	 return (

56	 <div className=”flex justify-center items-center text-white”>

57	 �<h1 className=”shake-horizontal”>Ocorreu um erro ao carregar o

questionario</h1>

58	 </div>

59);

60	 }

61	 }

62	 /* skipped code */

63	 And here goes the test case for these components:

64	 import { mount } from ‘enzyme’;

65	 import { Survey } from ‘./Survey’;

66	 import { auth } from ‘../../../../pages/login/Auth’;

67	 import Button from ‘../../buttons/primary/Primary’;

68	

69	 describe(‘Survey page’, () => {

70	

40

Common patterns that make TDD harderLEVEL I

71	 test(‘should show up message when survey url is not defined’,() => {

72	 const wrapper = mount(<Survey user={{}}/>);

73	 const text = wrapper.find(‘h1’).text();

74	 });

75	

76	 test(‘should not load survey when user id is missing’, () => {

77	 const wrapper = mount(<Survey user={{}} />);

78	 const text = wrapper.find(‘h1’).text();

79	 });

80	

81	 test(‘load survey passing user id as a parameter in the query string’, () => {

82	 const user = { uid: ‘uhiuqwqw-k-woqk-wq--qw’ };

83	

84	 const wrapper = mount(<Survey user={user} />);

85	 const url = wrapper.find(‘iframe’).prop(‘src’);

86	 expect(url.includes(auth.user.uid)).toBe(true);

87	 });

88	

89	 test(‘should not up button when it is loading’, () => {

90	 const user = { uid: ‘uhiuqwqw-k-woqk-wq--qw’ };

91	

92	 const wrapper = mount(<Survey user={user} />);

93	 expect(wrapper.find(Button).length).toBe(0);

94	 });

95	

96	 test(‘should not up button when skip prop is not set’, () => {

97	 const user = { uid: ‘uhiuqwqw-k-woqk-wq--qw’ };

98	

99	 const wrapper = mount(<Survey user={user} />);

100	 expect(wrapper.find(Button).length).toBe(0);

101	 });

102	

103	 test(‘show up button when loading is done and skip prop is true’, () => {

104	 const user = { uid: ‘uhiuqwqw-k-woqk-wq--qw’ };

105	

106	 const wrapper = mount(<Survey user={user} skip={true} />);

107	 wrapper.setState({

108	 loading: false

109	 });

110	 expect(wrapper.find(Button).length).toBe(1);

111	 });

112	});

41

Common patterns that make TDD harderLEVEL I

Despite the code age (long-time class components in reactjs), it does the job
well. Deriving the behaviour from the test cases, we understand that some
loading is going on based on the survey URL and the user id. Unfortunately, the
implementation details matter the most – if we run the test case for the current
implementation, it will fail.

Test Suites:	  1 failed, 62 passed, 63 total
Tests:	 3 failed, 593 passed, 596 total

And the fix for such a run is to export an environment variable named REACT_
APP_SURVEY_URL. Well, the easy fix would be to use the env variable. The long-
term fix would be to avoid depending on the external definition and assume some
defaults; here are some ideas that come to my mind to fix that properly:

•	 Assume a dummy variable as a default.

•	 Do not use any URL and build the tests around having it or not – if not, just
skip the execution.

Another example would be relying on the underlying file system. This issue is also
discussed in a Stack Overflow thread. The issue with the dependent test is: that
the test would run only on a Windows machine. Ideally, external dependencies
should be avoided using test doubles.

Points of Attention
1.	 File system
2.	Dependencies on the operating system
3.	External configuration management

The Enumerator

A unit test with each test case method name is only an enumeration, i.e., test1,
test2, test3. As a result, the intention of the test case is unclear, and the only way
to be sure is to read the test case code and pray for clarity, Carr (2022).

The Enumerator is covered in Episode 4 of the video38 series covering the TDD
anti-patterns hosted by Codurance.

Enumerating requirements in a brainstorming session usually is a good idea; it
can be handy to create such a list for later consumption, and those can even
become new features for a software project.

As in software, we are dealing with features; it seems to be a good idea to
translate those in the same language and order, so verifying those becomes a
checklist.

38	�https://app.livestorm.co/codurance/testing-anti-patterns-episode-4

�https://app.livestorm.co/codurance/testing-anti-patterns-episode-4
 https://app.livestorm.co/codurance/testing-anti-patterns-episode-4

42

Common patterns that make TDD harderLEVEL I

As good as it might sound for organization and feature handling, translating such
numbered lists straight to code might bring undesired readability issues and even
more for test code.

As weird as it might sound, enumerating test cases with numbers is common
among starters. For some reason, at first, it seems a good idea for them to write
down the same test description and add a number to identify it. The following
code depicts an example:

1	 from status_processor import StatusProcessor

2	

3	 def test_set_status():

4	

5	 row_with_status_inactive_1 = dict(

6	

7	 row_with__status_inactive_2 = dict(

8	

9	 row_with_status_inactive_3 = dict(

10	

11	 row_with_status_inactive_3b = dict(

12	

13	 row_with_status_inactive_4 = dict(

14	

15	 row_with_status_inactive_5 = dict(

The question for new practitioners inside the codebase is: What does 1 means?
What does 2 mean? Are those the same test case? In a nutshell, the key point
here is the space for being explicit about what is being tested. This is also
explored by Martin (2009) in the section G25: Replace Magic Numbers with
Named Constants.

The first example was in python, but this anti-pattern arises in different
programming languages. The following example in typescript is another type of
enumerating test cases, in this scenario, the test cases are file names that are
used to run the tests.

43

Common patterns that make TDD harderLEVEL I

Example of The Enumerator running in a GitHub Actions pipeline.

Enumerating test scenarios could hide some business patterns that are being
replaced by numbers. The intention of what is being tested is not clear. Another
issue that comes with that is the mitigation problem, if any of those tests fail, the
error message will most likely give you a number, but not the root cause of the
failure.

Points of Attention
1.	 Are we using 1, 2, 3?
2.	The test that failed was easy to understand? And if so, why?

The Free Ride

Rather than write a new test case method to test another feature or functionality,
a new assertion rides along in an existing test case (Carr 2022).

The Free Ride is covered in Episode 5 of the video39 series covering the TDD anti-
patterns hosted by Codurance.

The Puppeteer Project

The Free Ride is among the least popular anti-patterns in the survey. Perhaps this
is because the name makes it difficult to recall its meaning.

39	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5.

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

44

Common patterns that make TDD harderLEVEL I

The Free Ride appears in test cases that usually require a new test case to test
the desired behaviour. Still, another assertion is put in place, and sometimes even
logic inside the test case is added to support this addition.

Let’s have a look at the following example that was extracted from the Puppeteer
project40:

1	 it(‘Page.Events.RequestFailed’, async () => {

2	 const { page, server, isChrome } = getTestState();

3	

4	 await page.setRequestInterception(true);

5	 page.on(‘request’, (request) => {

6	 if (request.url().endsWith(‘css’)) request.abort();

7	 else request.continue();

8	 });

9	 const failedRequests = [];

10	 page.on(‘requestfailed’, (request) => failedRequests.push(request));

11	 await page.goto(server.PREFIX + ‘/one-style.html’);

12	 expect(failedRequests.length).toBe(1);

13	 expect(failedRequests[0].url()).toContain(‘one-style.css’);

14	 expect(failedRequests[0].response()).toBe(null);

15	 expect(failedRequests[0].resourceType()).toBe(‘stylesheet’);

16	

17	 if (isChrome)

18	 expect(failedRequests[0].failure().errorText).toBe(‘net::ERR_FAILED’);

19	 else

20	 expect(failedRequests[0].failure().errorText).toBe(‘NS_ERROR_FAILURE’);

21	 expect(failedRequests[0].frame()).toBeTruthy();

22	 });

The Free Ride anti-pattern manifests itself in the above code in if/else statements
at the end of the test. There are two test cases in this single test, but presumably,
the idea was to reuse the same setup code and slide in an additional assertion
within the same test case41.

Another approach would be to split the test case to focus on a single scenario at
a time. Puppeteer itself already mitigated this issue using a function of handling
such a scenario. Using that to split the test cases, we would have the first test
case focuses on the chrome browser:

40	�https://github.com/puppeteer/puppeteer/blob/9ca57f190c85c4b6af5665a8cfe4703571e0edde/test/network.spec.
ts#L497.

41	� Using logic inside the test case relates to The Success Against All Odds that is discussed in section 9.1.

 https://github.com/puppeteer/puppeteer/blob/9ca57f190c85c4b6af5665a8cfe4703571e0edde/test/network.s
 https://github.com/puppeteer/puppeteer/blob/9ca57f190c85c4b6af5665a8cfe4703571e0edde/test/network.s

45

Common patterns that make TDD harderLEVEL I

1	 itChromeOnly(‘Page.Events.RequestFailed’, async () => {

2	 const { page, server } = getTestState();

3	

4	 await page.setRequestInterception(true);

5	 page.on(‘request’, (request) => {

6	 if (request.url().endsWith(‘css’)) request.abort();

7	 else request.continue();

8	 });

9	 const failedRequests = [];

10	 page.on(‘requestfailed’, (request) => failedRequests.push(request));

11	 await page.goto(server.PREFIX + ‘/one-style.html’);

12	 expect(failedRequests.length).toBe(1);

13	 expect(failedRequests[0].url()).toContain(‘one-style.css’);

14	 expect(failedRequests[0].response()).toBe(null);

15	 expect(failedRequests[0].resourceType()).toBe(‘stylesheet’);

16	 expect(failedRequests[0].failure().errorText).toBe(‘net::ERR_FAILED’);

17	 expect(failedRequests[0].frame()).toBeTruthy();

18	 });

And then, the second case for Firefox:

1	 itFirefoxOnly(‘Page.Events.RequestFailed’, async () => {

2	 const { page, server } = getTestState();

3	

4	 await page.setRequestInterception(true);

5	 page.on(‘request’, (request) => {

6	 if (request.url().endsWith(‘css’)) request.abort();

7	 else request.continue();

8	 });

9	 const failedRequests = [];

10	 page.on(‘requestfailed’, (request) => failedRequests.push(request));

11	 await page.goto(server.PREFIX + ‘/one-style.html’);

12	 expect(failedRequests.length).toBe(1);

13	 expect(failedRequests[0].url()).toContain(‘one-style.css’);

14	 expect(failedRequests[0].response()).toBe(null);

15	 expect(failedRequests[0].resourceType()).toBe(‘stylesheet’);

16	 expect(failedRequests[0].failure().errorText).toBe(‘NS_ERROR_FAILURE’);

17	 expect(failedRequests[0].frame()).toBeTruthy();

18	 });

46

Common patterns that make TDD harderLEVEL I

Logic inside the test case is already an indication that The Free Ride anti-pattern
is playing a role. The Puppeteer example can be improved even further.42

Now that we shave split the logic into two separate test cases, there is some
duplicated code (that could be an argument for adopting The Free Ride). If that is
the case, the testing framework can help us here.

To avoid code duplication in this scenario, we could use the hook beforeEach and
move the required setup there.

The Jenkins Project

Moving on from the Puppeteer Project, there are other ways in which The
Free Ride can appear. Let’s switch to another open-source project that also
demonstrates The Free Ride anti-pattern.

The following code was extracted from the Jenkins project and it also shows the
signs of The Free Ride. But before diving into that, let’s have a look at the source
code:

1	 public class ToolLocationTest {

2	 @Rule

3	 public JenkinsRule j = new JenkinsRule();

4	

5	 @Test

6	 public void toolCompatibility() {

7	 �Maven.MavenInstallation[] maven = j.jenkins.getDescriptorByType(Maven.

DescriptorImpl.class).getInstallations();

8	 assertEquals(1, maven.length);

9	 assertEquals(“bar”, maven[0].getHome());

10	 assertEquals(“Maven 1”, maven[0].getName());

11	

12	 �Ant.AntInstallation[] ant = j.jenkins.getDescriptorByType(Ant.

DescriptorImpl.class).getInstallations();

13	 assertEquals(1, ant.length);

14	 assertEquals(“foo”, ant[0].getHome());

15	 assertEquals(“Ant 1”, ant[0].getName());

16	 �JDK[] jdk = j.jenkins.getDescriptorByType(JDK.DescriptorImpl.class).

getInstallations();

17	 assertEquals(Arrays.asList(jdk), j.jenkins.getJDKs());

42	�It is important to highlight that the Puppeteer project also welcomed the pull request that fixed The Free Ride
depicted in this section; for further details, please refer to the following pull request: https://github.com/puppeteer/
puppeteer/pull/8095.

 https://github.com/puppeteer/puppeteer/pull/8095
 https://github.com/puppeteer/puppeteer/pull/8095

47

Common patterns that make TDD harderLEVEL I

18	 assertEquals(2, jdk.length); // JenkinsRule adds a ‘default’ JDK

19	 �assertEquals(“default”, jdk[1].getName()); // make sure it’s really

that we’re seeing

20	 assertEquals(“FOOBAR”, jdk[0].getHome());

21	 assertEquals(“FOOBAR”, jdk[0].getJavaHome());

22	 assertEquals(“1.6”, jdk[0].getName());

23	 }

24	 }

Another approach to avoid The Free Ride, in this case, would be once again to
split the test cases:

1	 public class ToolLocationTest {

2	 @Test

3	 @LocalData

4	 public void shouldBeCompatibleWithMaven() {

5	 �Maven.MavenInstallation[] maven = j.jenkins.getDescriptorByType(Maven.

DescriptorImpl.class).getInstallations();

6	 assertEquals(1, maven.length);

7	 assertEquals(“bar”, maven[0].getHome());

8	 assertEquals(“Maven 1”, maven[0].getName());

9	 }

10	 @Test

11	 @LocalData

12	 public void shouldBeCompatibleWithAnt() {

13	 �Ant.AntInstallation[] ant = j.jenkins.getDescriptorByType(Ant.

DescriptorImpl.class).getInstallations();

14	 assertEquals(1, ant.length);

15	 assertEquals(“foo”, ant[0].getHome());

16	 assertEquals(“Ant 1”, ant[0].getName());

17	 }

18	 @Test

19	 @LocalData

20	 public void shouldBeCompatibleWithJdk() {

21	 �JDK[] jdk = j.jenkins.getDescriptorByType(JDK.DescriptorImpl.class).

getInstallations();

22	 assertEquals(Arrays.asList(jdk), j.jenkins.getJDKs());

23	 assertEquals(2, jdk.length); // JenkinsRule adds a ‘default’ JDK

24	 �assertEquals(“default”, jdk[1].getName()); // make sure it’s really

that we’re seeing

25	 assertEquals(“FOOBAR”, jdk[0].getHome());

48

Common patterns that make TDD harderLEVEL I

26	 assertEquals(“FOOBAR”, jdk[0].getJavaHome());

27	 assertEquals(“1.6”, jdk[0].getName());

28	 }

29	 }

The split would also bring the additional benefit of making it far easier to identify
the causes of a test failure

Points of Attention
1.	 If a test has assertions that assert different behaviours, this is a candidate

for splitting out into separate tests.
2.	Starting with everything in a single test case is fine, but not refactoring the

tests is something to watch for.

The Sequencer

A unit test that depends on items in an unordered list appearing in the same order
during assertions (Carr 2022).

The Sequencer is covered in Episode 4 of the video43 series covering the TDD
anti-patterns hosted by Codurance.

The Sequencer brings light to a subject related to what was covered in the testing
assertions blog post, Marabesi (2022), which depicts ways of improving the
feedback of test cases based on the type of assertion used (in this case, using
jest as a testing framework). More specifically, the section about Array Containing
depicts what The Sequencer is.

In short, The sequencer anti-pattern appears when an unordered list is used to
assert that it adheres to a given order – in other words, giving the idea that the
items on the list are required to be ordered. Which often is the source of wasted
time just to realize that everything was working as expected but not in the order
expected.

The following example shows The sequencer in practice; the test case checks if
the desired fruit is inside the list; the focus here is to know if the fruit is or is not
on the list regardless of the position in which it might appear:

30	 const expectedFruits = [‘banana’, ‘mango’, ‘watermelon’]

31	

32	 expect(expectedFruits[0]).toEqual(‘banana’)

33	 expect(expectedFruits[1]).toEqual(‘mango’)

34	 expect(expectedFruits[0]).toEqual(‘watermelon’)

43	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4

49

Common patterns that make TDD harderLEVEL I

As we don’t care about the position, using the utility arrayContaining might be a
better fit and makes the intention explicit for further readers.

1	 const expectedFruits = [‘banana’, ‘mango’, ‘watermelon’]

2	

3	 const actualFruits = () => [‘banana’, ‘mango’, ‘watermelon’]

4	

5	 expect(expectedFruits).toEqual(expect.arrayContaining(actualFruits))

It is important to note that arrayContaining also ignores the items’ position and
if there is an extra element. If the code under test cares about the exact number
of items, it would be better to use a combination of assertions. This behaviour is
described in the official Jest documentation.

The example outlined using Jest gives a hint on what to expect in codebases that
have this anti-pattern. Still, the following illustration depicts a scenario in which
the sequencer appears for a CSV file.44

1	 def test_predictions_returns_a_dataframe_with_automatic_predictions(self,form):

2	 order_id = “51a64e87-a768-41ed-b6a5-bf0633435e20”

3	 order_info = pd.DataFrame({“order_id”: [order_id], “form”: [form],})

4	 file_path = Path(“tests/data/prediction_data.csv”)

5	 service = FileRepository(file_path)

6	

7	 result = get_predictions(main_service=service, order_info=order_info)

8	

9	 �assert list(result.columns) == [“id”, “quantity”, “country”, “form”, “order_

id”]

On line 4, the CSV file is loaded to be used during the test. Next, the result
variable is what will be asserted against, and on line 9, we have the assertion
against the columns found in the file.

CSV files use the first row as the file header separated by a comma; in the first row is
where the name of the columns is defined, and the lines below follow the data each
column should have. If the CSV happens to be changed with a different column
order (in this case, switching country and form), we will see the following error:

1	 �tests/test_predictions.py::TestPredictions::test_predictions_returns_a_

dataframe_with_automatic_predictions FAILED [100%]

2	 �tests/test_predictions.py:16 (TestPredictions.test_predictions_returns_a_

44	�Thanks to Javier Martínez Alcantara for elaborating on this example and sharing it in Episode 4 of the anti-pattern
video series at Codurance.

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4

50

Common patterns that make TDD harderLEVEL I

dataframe_with_automatic_predictions)

[‘id’, ‘quantity’, ‘form’, ‘country’, ‘order_id’] != [‘id’, ‘quantity’,

‘country’, ‘form’, ‘order_id’]

3	

4	 Expected :[‘id’, ‘quantity’, ‘country’, ‘form’, ‘order_id’]

5	 Actual :[‘id’, ‘quantity’, ‘form’, ‘country’, ‘order_id’]

In this test case, the hint is that we would like to assert that the columns exist
regardless of the order. In the end, what matters the most is having the column
and the data for each column regardless of its order.

A better approach would be to replace line 2 previously depicted by the following
assertion:

1	 assert set(result.columns) == {“id”, “quantity”, “country”, “form”, “order_id”}

The sequencer is an anti-pattern that is not that often caught due to its nature
of being easy to write, and the test suite is often in green; such anti-pattern is
unveiled when someone has a hard time debugging the failure that is supposed
to be passing.

Points of Attention
1.	 Know your data structures
2.	Think about the role the order plays in a collection

The Nitpicker

A unit test compares a complete output when it’s only interested in small parts
of it. Hence, the test must continually be kept in line with otherwise unimportant
details. Endemic in web application testing, Carr (2022).

The Nitpicker is covered in Episode 3 of the video45 series covering the TDD anti-
patterns hosted by Codurance.

As the definition goes, The Nitpicker is noted in web applications where the
need to assert the output is focused on an entire object rather than the specific
property needed. This is common for JSON structures, as depicted in the first
example.

Laravel Assertions

The following code asserts that an application has been deleted. In this context,
an application is a regular entry in the database with the label “application.”

45	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3.

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3

51

Common patterns that make TDD harderLEVEL I

Note that this example in PHP is used to assert the exact output from the HTTP
request, nothing more, nothing less.

1	 <?php

2	 public function testDeleteApplication()

3	 {

4	 $response = $this->postApplication();

5	

6	 $this->assertFalse($response->error);

7	

8	 $this->delete(‘api/application/’ . $response->data)

9	 ->assertExactJson([// is this needed?

10	 ‘data’ => (string) $response->data,

11	 ‘error’ => false

12]);

13	 }

In this sense, this test is fragile for a specific reason: if we add another property
to the response it will fail to complain that the JSON has changed. For removing
those properties, such failure would be helpful; on the other hand, adding a new
property should not be the case.

The “fix” would be to replace the “exact” idea in this assertion to be less strict,
such as the following:

1	 <?php

2	 public function testDeleteApplication()

3	 {

4	 $response = $this->postApplication();

5	

6	 $this->assertFalse($response->error);

7	

8	 $this->delete(‘api/application/’ . $response->data)

9	 ->assertJson([// <!--- changing this assertion

10	 ‘data’ => (string) $response->data,

11	 ‘error’ => false

12	 �]);

}

The change here is to assert that the desired fragment is indeed in the output,
no matter if there are other properties in the output, as long as the desired one is
there. This simple change opens the door to move away from the fragile test we
had in the first place.

52

Common patterns that make TDD harderLEVEL I

The AWS CloudFront URL Signature Utility Project

Another way to not face The Nitpicker is to only look for the properties you are
concerned with. The following code is from an open-source project that handles
the signing process to access a resource in Amazon S346:

1	 describe(‘#getSignedCookies()’, function() {

2	 it(‘should create cookies object’, function(done) {

3	 var result = CloudfrontUtil.getSignedCookies(

4	 ‘http://foo.com’, defaultParams);

5	

6	 expect(result).to.have.property(‘CloudFront-Policy’);

7	 expect(result).to.have.property(‘CloudFront-Signature’);

8	 expect(result).to.have.property(‘CloudFront-Key-Pair-Id’);

9	 done();

10	 });

11	 });

The code has three assertions to assert that it has the desired property instead of
checking all at once, regardless of the output.

The Metrik Project

Another example of how to approach such assertion is the code extracted from
an open source project that aims to collect and process the Four Key Metrics,
Radziwill (2020) named Metrik:47

1	 @Test

2	 �fun `should calculate CFR correctly by monthly and the time split works well (

cross a calendar month)`() {

3	 val requestBody = “”” { skipped code } “””.trimIndent()

4	 RestAssured

5	 .given()

6	 .contentType(ContentType.JSON)

7	 .body(requestBody)

8	 .post(“/api/pipeline/metrics”)

9	 .then()

10	 .statusCode(200)

11	 .body(“changeFailureRate.summary.value”, equalTo(30.0F))

12	 .body(“changeFailureRate.summary.level”, equalTo(“MEDIUM”))

46	�The source code can be accessed at https://github.com/jasonsims/aws-cloudfront-sign/blob/master/test/lib/
cloudfrontUtil.test.js#L235.

47	�https://github.com/thoughtworks/metrik.

https://github.com/jasonsims/aws-cloudfront-sign/blob/master/test/lib/cloudfrontUtil.test.js#L235
https://github.com/jasonsims/aws-cloudfront-sign/blob/master/test/lib/cloudfrontUtil.test.js#L235
 https://github.com/thoughtworks/metrik

53

Common patterns that make TDD harderLEVEL I

13	 .body(“changeFailureRate.details[0].value”, equalTo(“NaN”))

14	 .body(“changeFailureRate.details[1].value”, equalTo(“NaN”))

15	 .body(“changeFailureRate.details[2].value”, equalTo(30.0F))

16	 }

Once again, the RestAssured48 framework is used to look for individual properties,
in turn, within the output rather than using the entire object for comparison, as
depicted in the first example.

Testing frameworks usually offer such utility to help practitioners to test their code
in this manner. In the first example, the PHP framework Laravel uses the syntax
assertJson/assertExactJson.49

The second example uses the testing library Chai to demonstrate how to assert
specific properties within an object.

Last but not least, RestAssured is the library used to demonstrate how to deal
with the Nitpicker within the Kotlin ecosystem.

Points of Attention
1.	 Assert against only those properties and values you are interested in
2.	It can be generalized to other applications (e.g., CLI)

The Dodger

A unit test with lots of tests for minor (and presumably easy to test) side effects,
but which never tests the core desired behaviour. Sometimes you may find this
in database access related tests, where a method is called, then the test selects
from the database and runs assertions against the result, Carr (2022).

The Dodger is covered in Episode 3 of the video50 series covering the TDD anti-
patterns hosted by Codurance.

The Dodger anti-pattern, is the most common anti-pattern when starting with a
test first approach to software development. Before diving into the code example,
let’s elaborate a bit more on why The Dodger might appear.

Writing code in a TDD manner implies writing the test first, for any code you write.
The rule is: start with a failing test, make it pass, and then refactor the design. As
simple as it gets, there are some specific moments while practicing this flow that
the question “what should I test” might arise.

48	�https://rest-assured.io

49	�https://laravel.com/docs/9.x/http-tests#verifying-exact-match

50	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3
 https://rest-assured.io
https://laravel.com/docs/9.x/http-tests#verifying-exact-match
 https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3

54

Common patterns that make TDD harderLEVEL I

As the rule goes, the common approach is to start writing tests for one class
and one production class, meaning that it will have a 1-1 relationship. Then, the
following question comes: “how small should the test scope be?”. As this “small”
is context-dependent, it is not obvious what the smallest acceptable scope for a
test should be.

Those two questions, while starting to practice TDD are common, and they
might lead to The Dodger anti-pattern, as it is focused on testing specific
implementation code rather than the desired behaviour,51 to depict that take the
following production code:

1	 <?php

2	

3	 namespace Drupal\druki_author\Data;

4	

5	 use Drupal\Component\Utility\UrlHelper;

6	 use Drupal\Core\Language\LanguageManager;

7	 use Drupal\Core\Locale\CountryManager;

8	

9	 /**

10	 * Provides author value object.

11	 */

12	 final class Author {

13	

14	 /** skipped protected properties to fit code here */

15	

16	 /**

17	 * Builds an instance from an array.

18	 *

19	 * @param string $id

20	 * The author ID.

21	 * @param array $values

22	 * The author information.

23	 */

24	 public static function createFromArray(string $id, array $values): self {

25	 $instance = new self();

26	 if (!\preg_match(‘/^[a-zA-Z0-9_-]{1,64}$/’, $id)) {

27	 �throw new \InvalidArgumentException(‘Author ID contains not allowed

characters, please fix it.’);

28	 }

51	� In this (https://www.youtube.com/watch?v=APFbb5MwLEU) talk Mario Cervera elaborates on what behaviour is
and how it applies to Test Driven Development.

https://www.youtube.com/watch?v=APFbb5MwLEU

55

Common patterns that make TDD harderLEVEL I

29	 $instance->id = $id;

30	

31	 if (!isset($values[‘name’]) || !\is_array($values[‘name’])) {

32	 �throw new \InvalidArgumentException(“The ‘name’ value is missing or

incorrect.”);

33	 }

34	 if (\array_diff([‘given’, ‘family’], \array_keys($values[‘name’]))) {

35	 �throw new \InvalidArgumentException(“Author name should contains ‘given’

and ‘family’ values.”);

36	 }

37	 $instance->nameGiven = $values[‘name’][‘given’];

38	 $instance->nameFamily = $values[‘name’][‘family’];

39	

40	 if (!isset($values[‘country’])) {

41	 throw new \InvalidArgumentException(“Missing required value ‘country’.”);

42	 }

43	 $country_list = \array_keys(CountryManager::getStandardList());

44	 if (!\in_array($values[‘country’], $country_list)) {

45	 �throw new \InvalidArgumentException(‘Country value is incorrect. It should

be valid ISO 3166-1 alpha-2 value.’);

46	 }

47	 $instance->country = $values[‘country’];

48	

49	 if (isset($values[‘org’])) {

50	 if (!\is_array($values[‘org’])) {

51	 �throw new \InvalidArgumentException(‘Organization value should be an

array.’);

52	 }

53	 if (\array_diff([‘name’, ‘unit’], \array_keys($values[‘org’]))) {

54	 �throw new \InvalidArgumentException(“Organization should contains ‘name’

and ‘unit’ values.”);

55	 }

56	 $instance->orgName = $values[‘org’][‘name’];

57	 $instance->orgUnit = $values[‘org’][‘unit’];

58	 }

59	

60	 if (isset($values[‘homepage’])) {

61	 �if (!UrlHelper::isValid($values[‘homepage’]) ||

!UrlHelper::isExternal($values[‘homepage’])) {

62	 �throw new \InvalidArgumentException(‘Homepage must be valid external

URL.’);

63	 }

56

Common patterns that make TDD harderLEVEL I

64	 $instance->homepage = $values[‘homepage’];

65	 }

66	

67	 if (isset($values[‘description’])) {

68	 if (!\is_array($values[‘description’])) {

69	 �throw new \InvalidArgumentException(‘The description should be an array

with descriptions keyed by a language code.’);

70	 }

71	 �$allowed_languages = \array_

keys(LanguageManager::getStandardLanguageList());

72	 $provided_languages = \array_keys($values[‘description’]);

73	 if (\array_diff($provided_languages, $allowed_languages)) {

74	 �throw new \InvalidArgumentException(‘The descriptions should be keyed by

a valid language code.’);

75	 }

76	 foreach ($values[‘description’] as $langcode => $description) {

77	 if (!\is_string($description)) {

78	 �throw new \InvalidArgumentException(‘Description should be a

string.’);

79	 }

80	 $instance->description[$langcode] = $description;

81	 }

82	 }

83	

84	 if (isset($values[‘image’])) {

85	 if (!\file_exists($values[‘image’])) {

86	 throw new \InvalidArgumentException(‘The image URI is incorrect.’);

87	 }

88	 $instance->image = $values[‘image’];

89	 }

90	

91	 if (isset($values[‘identification’])) {

92	 if (isset($values[‘identification’][‘email’])) {

93	 if (!\is_array($values[‘identification’][‘email’])) {

94	 �throw new \InvalidArgumentException(‘Identification email should be an

array.’);

95	 }

96	 $instance->identification[‘email’] = $values[‘identification’][‘email’];

97	 }

98	 }

99	

100	 return $instance;

57

Common patterns that make TDD harderLEVEL I

101	 }

102	

103	 public function getId(): string {

104	 return $this->id;

105	 }

106	

107	 public function getNameFamily(): string {

108	 return $this->nameFamily;

109	 }

110	

111	 public function getNameGiven(): string {

112	 return $this->nameGiven;

113	 }

114	

115	 public function getCountry(): string {

116	 return $this->country;

117	 }

118	

119	 public function getOrgName(): ?string {

120	 return $this->orgName;

121	 }

122	

123	 public function getOrgUnit(): ?string {

124	 return $this->orgUnit;

125	 }

126	

127	 public function getHomepage(): ?string {

128	 return $this->homepage;

129	 }

130	

131	 public function getDescription(): array {

132	 return $this->description;

133	 }

134	

135	 public function getImage(): ?string {

136	 return $this->image;

137	 }

138	

139	 public function checksum(): string {

140	 return \md5(\serialize($this));

141	 }

142	

58

Common patterns that make TDD harderLEVEL I

143	 public function getIdentification(?string $type = NULL): array {

144	 if ($type) {

145	 if (!isset($this->identification[$type])) {

146	 return [];

147	 }

148	 return $this->identification[$type];

149	 }

150	 return $this->identification;

151	 }

152	}

The goal is to validate the Author object before creating it from an array. To be
created, the given array should hold valid data; if it does not, an exception will be
thrown. Then, next up is the testing code:

1	 <?php

2	 /**

3	 * Tests that objects works as expected.

4	 */

5	 public function testObject(): void {

6	 �$author = Author::createFromArray($this->getSampleId(), $this-

>getSampleValues());

7	 $this->assertEquals($this->getSampleId(), $author->getId());

8	 �$this->assertEquals($this->getSampleValues()[‘name’][‘given’], $author-

>getNameGiven());

9	 �$this->assertEquals($this->getSampleValues()[‘name’][‘family’], $author-

>getNameFamily());

10	 �$this->assertEquals($this->getSampleValues()[‘country’], $author-

>getCountry());

11	 �$this->assertEquals($this->getSampleValues()[‘org’][‘name’], $author-

>getOrgName());

12	 �$this->assertEquals($this->getSampleValues()[‘org’][‘unit’], $author-

>getOrgUnit());

13	 �$this->assertEquals($this->getSampleValues()[‘homepage’], $author-

>getHomepage());

14	 �$this->assertEquals($this->getSampleValues()[‘description’], $author-

>getDescription());

15	 $this->assertEquals($this->getSampleValues()[‘image’], $author->getImage());

16	 �$this->assertEquals($this->getSampleValues()[‘identification’], $author-

>getIdentification());

17	 �$this->assertEquals($this->getSampleValues()[‘identification’][‘email’],

$author->getIdentification(‘email’));

59

Common patterns that make TDD harderLEVEL I

18	 $this->assertEquals([], $author->getIdentification(‘not exist’));

19	 $this->assertEquals($author->checksum(), $author->checksum());

20	 }

The first thing that is noticed, when skimming through the code, is that if you need
to change how you get the author name (rename the method, for example) you
also need to change the test code, even though the desired behaviour hasn’t
changed – the validation (the current behaviour) is still required.

An alternative approach would be to break out the single test case, into multiple
test cases, catching the desired exception if an undesired value is passed, then
encapsulate it in a validator class to prevent the coupling from the test and
production code.

Points of Attention
1.	 1-1 relationship between test class and one production class
2.	Focus on testing behaviour rather than specific implementation details

The Liar

An entire unit test that passes all of the test cases it has and appears valid, but
upon closer inspection, it is discovered that it doesn’t really test the intended
target at all, Carr (2022).

The Liar is covered in Episode 1 of the video52 series covering the TDD anti-
patterns hosted by Codurance.

The Liar is one of the most common anti-patterns due to its nature of being
hidden in the source code. It reveals itself only on closer inspection. There are at
least those two reasons to spot such issues among codebases:

1.	 Async-oriented test cases
2.	Time-oriented test cases

The first one is well explained in the Jest official documentation.53 Testing
asynchronous code becomes tricky as it is based on a future value you may or
may not receive (jestjs.io 2021). The following code is a reproduced example from
jest official documentation (the docs state even in a code comment to not use the
following test code in real projects).

52	�https://www.codurance.com/publications/tdd-anti-patterns-chapter-1

53	�The example used here is from jest but it can be found in other test frameworks.

https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
 https://www.codurance.com/publications/tdd-anti-patterns-chapter-1

60

Common patterns that make TDD harderLEVEL I

Async Test with Jest

1	 // Don’t do this!

2	 test(‘the data is peanut butter’, () => {

3	 function callback(data) {

4	 expect(data).toBe(‘peanut butter’);

5	 }

6	

7	 �fetchData(callback);

});

Getting back to The Liar anti-pattern, this test would pass without complaint,
even though that pass would actually be a lie, due to how the test is written. The
correct approach is to wait for the async function to finish its execution and give
Jest control over the flow execution again.

1	 test(‘the data is peanut butter’, done => {

2	 function callback(data) {

3	 try {

4	 expect(data).toBe(‘peanut butter’);

5	 done(); // invokes jest flow again, saying: “look I am ready now!”

6	 } catch (error) {

7	 done(error);

8	 }

9	 }

10	

11	 fetchData(callback);

12	 });

In the second one, Martin Fowler elaborates on the reasons for that to be the case
(Fowler 2011), and here let’s share some opinions that go along with what he wrote.

Asynchronous is a source of non-determinism; we should be careful with that, as
already depicted in the previous Jest example. Besides that, threads in test code
deserve special care as well. If you need to handle them, ensure they are working
as expected.

On the other hand, time-oriented tests sometimes can fail, seemingly for
no obvious reason, if no proper handling is used to control that. Therefore,
practitioners tend to adopt test doubles to handle dates in a way that they can
control without being coupled to a real-time. This avoids the situation where on
the day that the code was written, the test was passing, but on the following day,
it broke.

61

Common patterns that make TDD harderLEVEL I

Points of Attention
1.	 Async tests can mislead the test result, watch out for specific test runners.

The Loudmouth

A unit test (or test suite) that clutters up the console with diagnostic messages,
logging messages, and other miscellaneous chatter, even when tests are passing.
Sometimes during test creation there was a desire to manually see output, but
even though it’s no longer needed, it was left behind, Carr (2022).

The Loudmouth is covered in Episode 3 of the video54 series covering the TDD
anti-patterns hosted by Codurance.

When developing, it is common to add some temporary traces to the code to
help a developer confirm whether or not the code is behaving as expected. This
process is often referred to as debugging, often used when developers need to
clarify their understanding of a piece of code.

TDD practitioners argue that once TDD is practiced, no debugging tool is needed,
Freeman and Pryce (2009), be it a print statement or be it adding breakpoints into
the code.

But, what happens if you don’t have that much experience with TDD?

The Testable Project

Often the answer is a mix of both debugging and using the tests to guide you. For
example, the following code depicts some test code that can handle an error if it
receives an invalid piece of JavaScript code. Keep in mind that the code is used
to parse JavaScript code and act upon its result:

1	 test.each([[‘function’]])(

2	 ‘should not bubble up the error when an invalid source code is provided,

3	 (code) => {

4	 const strategy = jest.fn();

5	

6	 const result = Reason(code, strategy);

7	 expect(strategy).toHaveBeenCalledTimes(0);

8	 expect(result).toBeFalsy();

9	 }

10);

The check is straightforward. It ensures that the desired strategy was not called

54	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3

�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3
 https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3

62

Common patterns that make TDD harderLEVEL I

as the code is an invalid piece of JavaScript code. It also checks whether the
result from that was a Boolean false value. Let’s see now what the implementation
of this test looks like:

1	 const Reason = function(code, strategy) {

2	 try {

3	 const ast = esprima.parseScript(code);

4	

5	 if (ast.body.length > 0) {

6	 return strategy(ast);

7	 }

8	 } catch (error) {

9	 console.warn(error); // < ---------- this is loud

10	 return false;

11	 }

12	 };

Ideally, working in a TDD fashion, the console.log statement used would be
mocked from the start. This is because it would require verification of when it was
called and with which message. This first hint already points to an approach that
is not tested first. The following image depicts what The Loudmouth anti-pattern
causes. Even though the tests are green, there is a warning message – did the
test pass? Did the change break something?

Freeman and Pryce (2009) gives an idea of why logging (such as this console.log)
should be treated as a feature instead of a random log used for whatever reason.

The following snippet depicts a possible implementation mocking out the console.
log and preventing the message from being displayed during test execution:

1	 const originalConsole = globalThis.console;

2	

3	 beforeEach(() => {

4	 globalThis.console = {

5	 warn: jest.fn(),

6	 error: jest.fn(),

7	 log: jest.fn()

8	 };

9	 });

10	

11	 afterEach(() => {

12	 globalThis.console = originalConsole;

13	 });

63

Common patterns that make TDD harderLEVEL I

With the mocked console, now it’s possible to assert its usage of it instead of
printing the output while running the tests, the version without The Loudmouth
would be the following:

1	 const originalConsole = globalThis.console;

2	

3	 beforeEach(() => {

4	 globalThis.console = {

5	 warn: jest.fn(),

6	 error: jest.fn(),

7	 log: jest.fn()

8	 };

9	 });

10	

11	 afterEach(() => {

12	 globalThis.console = originalConsole;

13	 });

14	

15	 test.each([[‘function’]])(

16	 ‘should not bubble up the error when an invalid source code is provided’,

17	 (code) => {

18	 const strategy = jest.fn();

19	

20	 const result = Reason(code, strategy);

21	 expect(strategy).toHaveBeenCalledTimes(0);

22	 expect(result).toBeFalsy();

23	 expect(globalThis.console.warn).toHaveBeenCalled(); // < -- did it warn?

24	 }

25);

The Loudmouth anti-pattern can potentially cause to the developer to question
whether the test is passing for the right reason. This is because the additional
logging output pollutes the testing output while the tests are being executed.

Points of Attention
1.	 Clean up!
2.	Threat the logs as a feature, test drive them.

Level II

65

Common patterns that make TDD harder

Level II

Level II targets more of an intermediate skill level but is still relevant to beginners, as
we progress in the test-driven approach, things start to get blurry in the sense that we
already know what to test and we might also feel comfortable setting up any kind of
environment for testing, but due to the lack of confidence, some principles are lost.

Due to such progress, we might see test cases that should be red, but their result
is green.

Throughout this level, you will also see subjects related to:

•	 Avoid writing a test that passes first.

•	 Avoid digging into other object implementations to set up a test case.

•	 When a test fails and it is difficult to spot the root cause, you might face a
hidden dependency.

•	 Avoid catching exceptions just to make a test pass.

•	 Avoid sharing state between tests whenever possible.

•	 Avoid relying on exceptions to make the test pass instead, make assertions
explicit.

The Success Against All Odds

A test that was written pass first rather than fail first. As an unfortunate side effect,
the test case happens to always pass even though the test should fail, Carr
(2022).

The Success Against All Odds is covered in Episode 5 of the video55 series
covering the TDD anti-patterns hosted by Codurance.

The Success Against All Odds is an anti-pattern that is related to the lack of a test-first
approach, but instead, the practitioner follows the test first, and instead of failing first,
it just makes the test pass from the start, except for the first test in the test class.

When this is the case, The Success Against All Odds is revealed. The practice
of starting the test passing first leads to the test passing even when the failure is
expected.

To depict such a scenario, the following snippet is an attempt to implement
a repository from SpringBoot that will paginate and query based on a given
query string.

55	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

LEVEL II

�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

66

Common patterns that make TDD harder

Note: For the sake of the example, the teardown has been removed to keep it
simple. The tear-down removes all the data inserted in the database used during
the test.

1	 @Repository

2	 class ProductsRepositoryWithPostgres(

3	 private val entityManager: EntityManager

4) : Repository {

5	

6	 override fun listFilteredProducts(query: String?, input: PagingQueryInput?)

{

7	 val pageRequest: PageRequest = input.asPageRequest()

8	 val page: Page<Product> = if (query.isNullOrBlank()) {

9	 entityManager.findAll(pageRequest)

10	 } else {

11	 entityManager.findAllByName(query, pageRequest)

12	 }

13	 return page

14	 }

15	 }

Once we look at the given code that performs the access to the database and
apply the criteria, the following test code is used to test the repository.

Since the beginning, we have been doing some heavy lifting operations to populate
the database with different data. Which could potentially be a code smell.

1	 private fun setupBeforeAll() {

2	 productIds = (1..100).map { db().productWithDependencies().apply().

get<ProductId>() }

3	 productIdsContainingWood.addAll(

4	 (1..3).map { insertProductWithName(“WoodyWoodOrange “ + faker.

funnyName().name()) }

5)

6	 productIdsContainingWood.addAll(

7	 (1..3).map {

8	 insertProductWithName(

9	 faker.funnyName().name() + “ WoodyWoodOrange “ + faker.

funnyName().name()

10)

11	 }

12)

13	 }

LEVEL II

67

Common patterns that make TDD harder

With the setup in place, let’s look at the first test case in this class. The goal of the
test case is to test that given a sort parameter, the parameter CREATED_AT_ASC
(line 4) is the one we are looking for, once this has been given, the data should be
ordered accordingly.

1	 @Test

2	 fun `list products sorted by creation at date ascending`() {

3	 val pageQueryInput = PagingQueryInput(

4	 size = 30, page = 0, sort = listOf(Sort.CREATED_AT_ASC)

5)

6	 val result = repository.listFilteredProducts(“”, pageQueryInput)

7	

8	 assertThat(result.currentPage).isEqualTo(0)

9	 assertThat(result.totalPages).isEqualTo(4)

10	 assertThat(result.totalElements).isEqualTo(112)

11	

12	 assertThat(result.content.size).isEqualTo(30)

13	 �assertThat(result.content).allSatisfy { productIds.subList(0, 29).

contains(it.id) }

14	 }

Let’s dive a bit into what is going on in the code guided by the line numbers there:

1.	 Line 3, 4 and 5: The parameter that we send to the repository with the
order we want and pagination

2.	Line 6: The execution of the code we want to test
3.	Line 8: We verify that the page returned from the repository is the first one
4.	Line 9: We verify that there are 4 pages in total
5.	Line 10: We verify that there are 112 in total
6.	Line 12: We verify that the list of items returned is the same as the one asked in

the pagination
7.	 Line 13: We verify that the list returned is the same as in the list created in the

setup before all

The next text case depicts a variant of what we might want to test, which is the
reverse order. Instead of ascending order, we will now test in descending order.
Note that most of the assertions are the same if we compare them with the ones
from the previous test case (from lines 6 through 14).

1	 @Test

2	 fun `list products sorted by creation at date ascending`() {

3	 val pageQueryInput = PagingQueryInput(

4	 size = 30, page = 0, sort = listOf(Sort.CREATED_AT_DESC)

5)

LEVEL II

68

Common patterns that make TDD harder

6	 val result = repository.listFilteredProducts(“”, pageQueryInput)

7	

8	 assertThat(result.currentPage).isEqualTo(0)

9	 assertThat(result.totalPages).isEqualTo(4)

10	 assertThat(result.totalElements).isEqualTo(112)

11	

12	 assertThat(result.content.size).isEqualTo(30)

13	 �assertThat(result.content).allSatisfy { productIds.subList(0, 29).

contains(it.id) }

14	 }

Let’s avoid repeating the previous bullet point list and focus on the important
items.

The first important aspect is the number of assertions we might not need for each
test case. For example, from 8 through 12, some assertions verify the pagination
and the numbers related to the list, reading the test name. Our goal is to test the
sorting first and not the pagination functionality. In other words, we could have
used just the last assertion for this test.

Moving on, let’s dive into line 13 a bit more. Having an assertion such as the one
here is one of the possible causes of The Success Against All Odds, and actually,
in the test code, is one of them, as it asserts on a subset of the list that will always
be true.

In the xUnit Test Patterns book, a way to avoid such false/positive behaviour is to
have the code as simple as possible, with no logic in it.56 This is called the robust
test Meszaros (2007).

Refactoring Success Against All Odds

The question here is, what could we do, as an alternative, in order to avoid such a
thing? A possible solution for this test case and source code is related to splitting
responsibilities in the test case. We could focus on sorting only and test the
pagination in a subsequent later test.

The first example here would be ordering the list in ascending order, it is worth
mentioning that with this approach, we could potentially remove the big setup
shown previously in the hook setupBeforeAll. For this approach, we instead set up
the data that is required for the test inside it. No more shared state between tests.

56	�The Free Ride depicted in section 8.4 also uses logic inside test cases.

LEVEL II

69

Common patterns that make TDD harder

1	 @Test

2	 fun `list products sorted by ascending creation date`() {

3	 �db().productWithDependencies(“created_at” to “2022-04-03T00:00:00.00Z”).

apply() // 1

4	 �db().productWithDependencies(“created_at” to “2022-04-02T00:00:00.00Z”).

apply() // 2

5	 �db().productWithDependencies(“created_at” to “2022-04-01T00:00:00.00Z”).

apply() // 3

6	

7	 �val pageQueryInput = PagingQueryInput(sort = listOf(SortOrder.CREATED_AT_

ASC))

8	

9	 val result = repository.listFilteredProducts(“”, pageQueryInput)

10	

11	 assertThat(result.content[0].createdAt).isEqualTo(“2022-04-01T00:00:00.00Z”)

12	 assertThat(result.content[1].createdAt).isEqualTo(“2022-04-02T00:00:00.00Z”)

13	 assertThat(result.content[2].createdAt).isEqualTo(“2022-04-03T00:00:00.00Z”)

14	 }

Once that is in place, we then move to the descending-order test case, which is
the same, but the assertion and setup changed:

1	 @Test

2	 fun `list products sorted by creation at date descending`() {

3	 �db().productWithDependencies(“created_at” to “2022-04-01T00:00:00.00Z”).

apply()

4	 �db().productWithDependencies(“created_at” to “2022-04-02T00:00:00.00Z”).

apply()

5	 �db().productWithDependencies(“created_at” to “2022-04-03T00:00:00.00Z”).

apply()

6	

7	 �val pageQueryInput = PagingQueryInput(sort = listOf(SortOrder.CREATED_AT_

DESC))

8	

9	 �val result = repository.listFilteredProducts(“”, pageQueryInput)

10	

11	 �assertThat(result.content[0].createdAt).isEqualTo(“2022-04-

03T00:00:00.00Z”)

12	 �assertThat(result.content[1].createdAt).isEqualTo(“2022-04-

02T00:00:00.00Z”)

13	 �assertThat(result.content[2].createdAt).isEqualTo(“2022-04-

01T00:00:00.00Z”)

14	 }

LEVEL II

70

Common patterns that make TDD harder

Next up, is the pagination, now we can start to focus on the pagination and the
aspects it brings.

Once we have the sorting in place, we can start to have a look at the pagination,
and of course, try to test a specific thing at a time. The following example depicts how
we could assert that we got the desired number of pages when paging the result.

1	 @Test

2	 fun `should have one page when the list is ten`() {

3	 insertTenProducts()

4	 val page = PagingQueryInput(size = 10)

5	

6	 val result = repository.listFilteredProducts(

7	 null,

8	 null,

9	 Page

10)

11	

12	 assertThat(result.totalPages).isEqualTo(1)

13	 }

The approach to decomposing the tests into smaller “units”57 would help the
communication between the team members dealing with this code later on and
make these tests more robust.

Points of Attention
1.	 Start with the test in red whenever possible.
2.	Avoid repeating the same assertions from previous test cases.
3.	Avoid sharing state between test cases.

The Stranger
A test case that doesn’t even belong in the unit test, it is part of. It is really testing
a separate object, most likely an object that is used by the object under test,
but the test case has gone and tested that object directly without relying on the
output from the object under test, making use of that object for its own behaviour.
Also known as TheDistantRelative, Carr (2022).

The Stranger is covered in Episode 5 of the video58 series covering the TDD anti-
patterns hosted by Codurance.

57	�Note that here the unit does not refer to a function or method but rather to behaviour (or responsibility if you will).

58	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

LEVEL II

�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5

71

Common patterns that make TDD harder

Let’s start with an introduction, in this blog post from java revisited59, the way that
the law of Demeter is explained gives us a hint on why The Stranger is an anti-
pattern. We can also relate this to the book Clean Code, which recommends “talk
to friends, not to strangers” in designing code. In the example given in the book,
the method chain is the one that exposes more to The Stranger. The example is
being used in production code.

Carlos Caballero, in his blog post, Demeter’s Law: Don’t talk to strangers!60 also
uses production code to depict an example violation of the law. He provides a
code snippet that ideally would need to be tested. It is at this point that we shall
expand further on and specifically, implement the supporting test code.

To start with here is the code that depicts the law of Demeter violation within the
production code:

1	 person

2	 .getHouse() // return an House’s object

3	 .getAddress() // return an Address’s object

4	 .getZipCode() // return a ZipCode Object

Such code could potentially lead to The Stranger anti-pattern within the test code.
For example, to test if the given person has a valid zip code, we could potentially
write something like this:

1	 describe(‘Person’, () => {

2	 it(‘should have valid zip code’, () => {

3	 const person = FakeObject.createAPerson({ zipCode: ‘56565656’ });

4	 person

5	 .getHouse()

6	 .getAddress()

7	 .getZipCode()

8	 expect(‘56565656’).toEqual(person.house.address.zipCode);

9	 });

10	 });

Note that if we want to access the zip code, we need to go all the way down to
the ZipCode object. This provides a hint that in fact what we want to test is the
Address object itself and not Person.61

59	�https://javarevisited.blogspot.com/2014/05/law-of-demeter-example-in-java.html

60	�https://betterprogramming.pub/demeters-law-don-t-talk-to-strangers-87bb4af11694

61	� The idea here is not to bring the topic around 1-1 relationship between production code and test code, but rather
to depict a specific scenario in which we are breaking encapsulation as well.

LEVEL II

�https://javarevisited.blogspot.com/2014/05/law-of-demeter-example-in-java.html
 https://javarevisited.blogspot.com/2014/05/law-of-demeter-example-in-java.html
 https://betterprogramming.pub/demeters-law-don-t-talk-to-strangers-87bb4af11694

72

Common patterns that make TDD harder

1	 describe(‘Address’, () => {

2	 it(‘should have valid zip code’, () => {

3	 const address = new Address(

4	 ‘56565656’,

5	 ‘1456’,

6	 ‘Street X’,

7	 ‘My city’,

8	 ‘Great state’,

9	 ‘The best country’

10);

11	 expect(‘56565656’).toEqual(address.getZipCode());

12	 });

13	 });

The test itself has something here that could be improved to avoid this. For
example, the interaction between the Person object, Address and Zip code could
be “hidden” within an implementation behind an abstraction. In this case, we
would then test the output of that, rather than directly navigating all the way down
the object graph.

Before moving on to the next anti-pattern, remember that The Stranger could
also be categorized as test smell. Here are some signs that could lead to The
Stranger:

1.	 It is related to the xUnit (Meszaros 2007) pattern in the section “Test
smells”

2.	The usage of mocking

The Hidden Dependency

A close cousin of The Local Hero, a unit test that requires some existing data
to have been populated somewhere before the test runs. If that data wasn’t
populated, the test would fail and leave little indication to the developer what it
wanted or why… forcing them to dig through acres of code to find out where the
data it was using was supposed to come from (Carr 2022).

The Hidden Dependency is covered in Episode 4 of the video62 series covering
the TDD anti-patterns hosted by Codurance.

The Hidden Dependency is an anti-pattern which is popular among practitioners.
In particular, The Hidden Dependency annoys and makes practitioners unhappy
about testing in general. It can be the source of hours debugging test code in

62	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4

LEVEL II

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4

73

Common patterns that make TDD harder

an attempt to understand why a test is failing. Sometimes it gives little to no
information about the root cause. This issue is related to the following:

•	 Databases (embedded databases to run tests)

•	 Builders (complex logic to build data to set up a test case)

In the next section, we will go over the Vuex state management library that hides
the complexity to handle data for frontend applications. If you are unfamiliar with
Vuex63 or the Flux pattern, it is recommended to check it out first.

The Vuex Dependency

The example in this section is related to Vue and Vuex, in this test case, the goal
is to list users in a dropdown. Vuex is used as a source of truth for the data.

1	 export const Store = () => ({

2	 modules: {

3	 user: {

4	 namespaced: true,

5	 state: {

6	 currentAdmin: {

7	 email: ‘fake@fake.com’,

8	 },

9	 },

10	 getters: userGetters,

11	 },

12	 admin: adminStore().modules.admin,

13	 },

14	 });

On line 2, the structure needed for Vuex is defined, and on line 12 the admin store
is created. Once the stubbed store is in place, we can start to write the test itself.
As a hint for the next piece of code, note that the store has no parameters.

1	 �it(‘should list admins in the administrator field to be able to pick one up’,

async () => {

2	 const store = Store();

3	

4	 const { findByTestId, getByText } = render(AdminPage as any, {

5	 store,

6	 mocks: {

7	 $route: {

63	�https://vuex.vuejs.org

LEVEL II

https://vuex.vuejs.org

74

Common patterns that make TDD harder

8	 query: {},

9	 },

10	 },

11	 });

12	 await fireEvent.click(await findByTestId(‘admin-list’));

13	 await waitFor(() => {

14	 expect(getByText(‘Admin’)).toBeInTheDocument();

15	 });

16	 });

On line 2 we create the store to use in the code under test, and on line 14, we try
to search the text Admin. We assume the list is working if it is in the text.

The catch here is that if the test fails to find the Admin, we will need to dive into
the code inside the store to see what is going on, as you might have noticed, if
we look at only the test case, it is not clear where the text Admin comes from.

The next code example shows a better approach to explicitly using the data
needed when setting up the test. This time on line 2, the Admin is expected to
exist beforehand.

1	 �it(‘should list admins in the administrator field to be able to pick one up’,

async () => {

2	 const store = Store({ admin: { name: ‘Admin’ } });

3	

4	 const { findByTestId, getByText } = render(AdminPage as any, {

5	 store,

6	 mocks: {

7	 $route: {

8	 query: {},

9	 },

10	 },

11	 });

12	

13	 await fireEvent.click(await findByTestId(‘admin-list’));

14	

15	 await waitFor(() => {

16	 expect(getByText(‘Admin’)).toBeInTheDocument();

17	 });

18	 });

In general, The Hidden Dependency can appear in different ways and different
styles of tests. The next section depicts a hidden issue that comes from testing

LEVEL II

75

Common patterns that make TDD harder

the integration with a database.

The Database Dependency

Here we are trying to fetch manual purchases from the database based on a
given criterion that is implemented behind the method get_manual_purchases.
Then we compare the output from the method with the desired outcome that is
stored in a CSV file.

1	 def test_dbdatasource_is_able_to_load_products_related_only_to_manual_purchase(

2	 self, db_resource

3):

4	 config_file_path = Path(“./tests/data/configs/docker_config.json”)

5	 expected_result = pd.read_csv(“./tests/data/manual_product_info.csv”)

6	

7	 datasource = DBDataSource(config_file_path=config_file_path)

8	

9	 result = datasource.get_manual_purchases()

10	

11	 assert result.equals(expected_result)

On lines 4 and 5 the setup is done via configuration files, line 5 is important as the
result from the test should match its content. Then on line 9, the code under test
is exercised.

Inside this method, there is a query that is executed in order to fetch the manual
purchases and assert that it is the same as the expected result:

1	 query: str = “””

2	 select

3	 product.id

4	 po.order_id,

5	 po.quantity,

6	 product.country

7	 from product

8	 join purchased as pur on pur.product_id = product.id

9	 join purchased_order as po on po.purchase_id = cur.id

10	 where product.completed is true and

11	 pur.type = ‘MANUAL’ and

12	 product.is_test is true

13	 ;

14	 “””

LEVEL II

76

Common patterns that make TDD harder

This query has a particular where clause that is hidden from the test case, thus
making the test fail. By default, the data generated from the expected result set
the flag test to false, leading to no results returning in the test case.

Points of Attention
1.	 Test data integration as soon as possible.
2.	If possible, avoid using data from external sources within tests.

The Greedy Catcher

A unit test which catches exceptions and swallows the stack trace, sometimes
replacing it with a less informative failure message, but sometimes even just
logging (c.f. Loudmouth) and letting the test pass, Carr (2022).

The Greedy Catcher is covered in Episode 4 of the video64 series covering the
TDD anti-patterns hosted by Codurance.

Handling exceptions (or even using them) can be tricky. Some practitioners
advocate for not using exceptions at all65; others use them as a mechanism to
inform that something went wrong during the execution of the program.

Despite the kind of developer you are, testing for exceptions can unveil some
patterns that hurt the test-first approach.66

The Greedy Catcher appears when the subject under test handles the exception
and hides useful information regarding the kind of exception, message or stack
trace. Such information is helpful to mitigate possible undesirable exceptions
being thrown.

Next, we have an example from a possible candidate for The Greedy Catcher.
This piece of code was extracted from the project Laravel/Cashier stripe –
Laravel it is written in PHP and is one of the most popular projects within the PHP
ecosystem.

The following code is a package that wraps the Stripe SDK67 into a Laravel
package that offers an easier approach to integrating stripe into Laravel
applications.

64	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4

65	�Here is a StackOverflow thread that discusses the subject in depth https://stackoverflow.com/questions/1736146/
why-is-exception-handling-bad

66	�The Greedy Catcher and The Secret Catcher are both similar but cover different aspects of exceptions. In section
9.6 we cover in detail The Secret Catcher.

67	�Stripe Software Development Kit – https://stripe.com/docs/development/quickstart/php

LEVEL II

�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-4
https://stackoverflow.com/questions/1736146/why-is-exception-handling-bad
https://stackoverflow.com/questions/1736146/why-is-exception-handling-bad
https://stripe.com/docs/development/quickstart/php

77

Common patterns that make TDD harder

The Laravel/Cashier Stripe Project

Despite having a try/catch handler inside the test case(that could potentially
point to further improvements) when the exception is being thrown, the test case
catches it and asserts some logic:

1	 public function test_retrieve_the_latest_payment_for_a_subscription()

2	 {

3	 �$user = $this->createCustomer(‘retrieve_the_latest_payment_for_a_

subscription’);

4	

5	 try {

6	 $user->newSubscription(‘main’, static::$priceId)

7	 ->create(‘pm_card_threeDSecure2Required’);

8	

9	 �$this->fail(‘Expected exception ‘.IncompletePayment::class.’ was not

thrown.’);

10	 } catch (IncompletePayment $e) {

11	 $subscription = $user

12	 ->refresh()

13	 ->subscription(‘main’);

14	

15	 $this->assertInstanceOf(

16	 Payment::class,

17	 $payment = $subscription->latestPayment()

18);

19	 $this->assertTrue($payment->requiresAction());

20	 }

21	 }

The Greedy Catcher arises not only in the test code but also in the production
code, hiding useful information for tracing back an exception is a source of time
spent that could have been saved if the code had been written differently.

In the next section, we will see an example of how The Greedy Catcher anti-
pattern can also be found within production code.

Parsing the JTW token with JavaScript

The following example is a representation of a JavaScript middleware component
that parses a JWT token and redirects the user if the token is empty. The code
uses the libraries Jest and Nuxtjs.

Line 3 decoded the JWT token via jwt-decode package, in the case of success,

LEVEL II

78

Common patterns that make TDD harder

the middleware follows the flow. If the token is false for any reason, it invokes the
logout function (on lines 8 and 11).

As far as the code looks, it is difficult to recognize that under the catch block, the
exception is being ignored and if something happens, the result will be what the
logout function returns (line 11).

1	 export default function(context: Context) {

2	 try {

3	 const token = jwt_decode(req?.cookies[‘token’]);

4	

5	 if (token) {

6	 return null;

7	 } else {

8	 return await logout($auth, redirect);

9	 }

10	 } catch (e) {

11	 return await logout($auth, redirect);

12	 }

13	 }

The test code uses some Nuxtjs context to create the request that is going to be
processed by the middleware. The single test case depicts an approach to verify
if the user is being logged out or if the token is invalid. Note that the cookie is
behind the serverParameters variable.

1	 it(‘should log out when token is invalid’, async () => {

2	 const redirect = jest.fn();

3	 const serverParameters: Partial<IContextCookie> = {

4	 route: currentRoute as Route, $auth, redirect, req: { cookies: null },

5	 };

6	

7	 await actions.nuxtServerInit(

8	 actionContext as ActionContext,

9	 serverParameters as IContextCookie

10);

11	

12	 expect($auth.logout).toHaveBeenCalled();

13	 });

The tricky part is that the test above passes as it should, but not for the expected
reason. serverParameters holds the req object that has cookies set to null (line 3).
When that is the case, JavaScript will throw an error as it will not be possible to

LEVEL II

79

Common patterns that make TDD harder

access a token of null.68

Such behaviour executes the catch block, which calls the desired logout function
(line 12). The stack trace for this error will not show up in any place, as the catch
block ignores the exception in the production code.

Points of Attention
1.	 Hiding information in try/catch blocks makes it harder to spot issues in

production code.
2.	Spending time to understand why the test is not giving the desired

behaviour.

The Peeping Tom

A test that, due to shared resources, can see the result data of another test, and
may cause the test to fail even though the system under test is perfectly valid. This
has been seen commonly in fitness, where the use of static member variables to
hold collections aren’t properly cleaned after test execution, often popping up
unexpectedly in other test runs. Also known as TheUninvitedGuests (Carr 2022).

The Peeping Tom is covered in Episode 6 of the video69 series covering the TDD
anti-patterns hosted by Codurance.

Having to deal with any global state within a test case is something that brings an
extra layer of complexity. It requires explicit cleanup steps before each test and
even after each test case is executed to avoid side effects.

The Peeping Tom depicts the issue faced when using any form of global
state during test execution. Within the popular question-and-answer website
Stackoverflow, there is a thread dedicated to this subject that has a few
comments which help in understanding this better. Christian Posta also blogged
about static methods being code smells.70

In there, there is a snippet that was extracted from this blog post that depicts
how the use of Singleton (Gamma et al. 1994) and static properties can harm the
test case and keep the state between tests. Here, we are going to use the same
example with minor changes to make the code compile.

The idea behind the Singleton is to create and reuse a single instance from any

68	JavaScript will behave like that for an attempt to access any property from a variable that is null or undefined.

69	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-6

70	�The blog post can be found at https://blog.christianposta.com/testing/java-static-methods-can-be-a-code-smell.

LEVEL II

�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-6
 https://blog.christianposta.com/testing/java-static-methods-can-be-a-code-smell
 https://blog.christianposta.com/testing/java-static-methods-can-be-a-code-smell
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-6
https://blog.christianposta.com/testing/java-static-methods-can-be-a-code-smell

80

Common patterns that make TDD harderLEVEL II

kind of object.71 So to achieve that, we can create a class (in this example called
MySingleton) and block the creation of an object through its constructor and allow
only the creation inside the class, controlled by the method getInstance:

1	 public class MySingleton {

2	 private static MySingleton instance;

3	 private String property;

4	

5	 private MySingleton(String property) {

6	 this.property = property;

7	 }

8	

9	 public static synchronized MySingleton getInstance() {

10	 if (instance == null) {

11	 instance = new MySingleton(System.getProperty(“com.example”));

12	 }

13	 return instance;

14	 }

15	

16	 public Object getSomething() {

17	 return this.property;

18	 }

19	 }

When it comes to testing, there is not much in the way of a public interface for us to
interact with. However, the method exposed in the MySingleton called getSomething
can be invoked and asserted against a value as shown in the following snippet:

1	 import org.junit.jupiter.api.Test;

2	

3	 import static org.assertj.core.api.Assertions.assertThat;

4	

5	 class MySingletonTest {

6	 @Test

7	 public void somethingIsDoneWithAbcIsSetAsASystemProperty(){

8	 System.setProperty(“com.example”, “abc”);

9	 MySingleton singleton = MySingleton.getInstance();

10	 assertThat(singleton.getSomething()).isEqualTo(“abc”);

11	 }

12	

13	 }

71	� Rainer Grimm listed the advantages and disadvantages of the Singleton, in there, he listed global access as
an advantage, therefore, he also mentioned the issue regarding testability which he relates to The Hidden
Dependency that we discuss in Chapter 9.3.

81

Common patterns that make TDD harderLEVEL II

A single test case will pass without any problem, the test case creates the
Singleton instance and invokes the getSomething to retrieve the property value
defined when the test was defined. The issue arises when we try to test the same
behaviour but with different values in the System.setProperty.

1	 import org.junit.jupiter.api.Test;

2	

3	 import static org.assertj.core.api.Assertions.assertThat;

4	

5	 class MySingletonTest {

6	 @Test

7	 public void somethingIsDoneWithAbcIsSetAsASystemProperty(){

8	 System.setProperty(“com.example”, “abc”);

9	 MySingleton singleton = MySingleton.getInstance();

10	 assertThat(singleton.getSomething()).isEqualTo(“abc”);

11	 }

12	

13	 @Test

14	 public void somethingElseIsDoneWithXyzIsSetAsASystemProperty(){

15	 System.setProperty(“com.example”, “xyz”);

16	 MySingleton singleton = MySingleton.getInstance();

17	 assertThat(singleton.getSomething()).isEqualTo(“xyz”);

18	 }

19	 }

Given the nature of the code, the second test case will fail and shows that it still
holds the value abc.

As the Singleton guarantees only one instance from a given object, during the
test execution, the first test that is executed creates the instance and, for the
following executions, reuses the same instance previously created.

The problem here is “easy” to see as one test case is executed after the other.
But, for testing frameworks that execute tests in parallel or that do not guarantee
the test order (which is often the default behaviour), it can be much for difficult
to identify test failures caused by a dependency on a global state that has been
mutated by other tests.

It can confuse practitioners because the test will pass when it is run alone and fail
when running together with others.

As the Singleton class has a private property that controls the instance created,
it is not possible to clean it without changing the code itself (which would be a

82

Common patterns that make TDD harderLEVEL II

change just for testing purposes). Therefore, another approach would be to use
reflection to reset the property and always start with a fresh instance, as the
following code depicts:

1	 class MySingletonTest {

2	

3	 @BeforeEach

4	 �public void resetSingleton() throws SecurityException, NoSuchFieldException,

IllegalArgumentException, IllegalAccessException {

5	 Field instance = MySingleton.class.getDeclaredField(“instance”);

6	 instance.setAccessible(true);

7	 instance.set(null, null);

8	 }

9	 }

Making use of reflection, it is possible to reset the instance before each test
case is executed (using the annotation @BeforeEach). Although this approach
is possible, it should bring attention to the extra code and possible side effects
while testing the application using such a pattern.

Depicting The Peeping Tom like that, besides having to use reflection to reset
a property, might not seem harmful to test drive code, but it can become even
harder when a piece of code that we want to test depends on a Singleton.

As shared by Rodaney Glitzel (2022), the problem is not Singleton itself but a
code that depends on that, doing so, the code that depends on that becomes
harder to test.

The Secret Catcher

A test that at first glance appears to be doing no testing due to the absence
of assertions, but as they say, “the devil’s in the details.” The test relies on an
exception to be thrown when a mishap occurs and expects the testing framework
to capture the exception and report it to the user as a failure, Carr (2022).

The Secret Catcher is covered in Episode 3 of the video72 series covering the
TDD anti-patterns hosted by Codurance.

The Secret Catcher is a practitioner’s old friend. It can be spotted in different
codebases. This anti-pattern often relates to the “hurry” in which features need to
be released or even the desire to achieve X% of test coverage.

72	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3.

https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-3

83

Common patterns that make TDD harderLEVEL II

This anti-pattern has secret within its name because the code doesn’t make it
clear that it is supposed to throw an exception. Instead of handling (or catching)
said exception, the test case instead simply ignores it. The Secret Catcher is also
related to The Greedy Catcher.

The following example written in Vue.js with an Apollo client is an attempt to depict
such a scenario. At first glance, the method seems fine and does what it is supposed
to. In other words, it sends a mutation operation to the server to remove the payment
type from the associated user, and, in the end, it updates the UI to reflect that:

1	 async removePaymentMethod(paymentMethodId: string) {

2	 this.isSavingCard = true;

3	

4	 const { data } = await this.$apolloProvider.clients.defaultClient.mutate({

5	 mutation: DetachPaymentMethodMutation,

6	 variables: { input: { stripePaymentMethodId: paymentMethodId } },

7	 });

8	

9	 if (this.selectedCreditCard === paymentMethodId) {

10	 this.selectedCreditCard = null;

11	 }

12	

13	 this.isSavingCard = false;

14	 }

The JavaScript test is written using jest and the testing library, and here is a
challenge for you, before going any further in the text, can you spot what is
missing from the test case?

1	 test(‘it handles error when removing credit card ‘, async () => {

2	 const data = await Payment.asyncData(asyncDataContext);

3	 data.paymentMethod = PaymentMethod.CREDIT_CARD;

4	

5	 const { getAllByText } = render(Payment, {

6	 mocks,

7	 data() {

8	 return { ...data };

9	 },

10	 });

11	

12	 const [removeButton] = getAllByText(Remove’);

13	 await fireEvent.click(removeButton);

14	 });

84

Common patterns that make TDD harderLEVEL II

Let’s start with the missing assertion at the end of the test case. If you haven’t
noticed, the last step that the test does is to wait for the click event. For some
feature that removes a payment method from a user, asserting that a message is
shown would be a good idea.

Besides, the test case relies on a specific setup that assumes that the Graphql
mutation will always work. However, it is entirely possible that the Graphql
mutation could fail and throw an exception within the production code. But the
test is designed to cater to that situation. In this scenario, the test case relies on
the jest testing framework to report the error, if any, rather than the error being
handled within the test itself.

Points of attention
1.	 Avoid relying on errors from the test runner.
2.	Make explicit the desired assertion in the test case.

Level III

86

Common patterns that make TDD harderLEVEL III

Level III

In this chapter, we will go over the practices that one might face when practicing
TDD for a while and, in some cases, even trying to apply TDD in code bases that
are not ready for testability.

•	 Avoid having a test case that does everything simultaneously, leading to
many lines in a single test case.

•	 Spending too much time setting up the test case points to a code that is not
designed for testability, this relates to The Mockery covered later on.

•	 If possible, avoid violating encapsulation to achieve 100% of code coverage.

The Giant
A unit test that, although it is validly testing the object under test, can span
thousands of lines and contain many, many test cases. This can be an indicator
that the system under tests is a God Object, Carr (2022).

The Giant is covered in Episode 1 of the video73 series covering the TDD anti-
patterns hosted by Codurance.

The Giant anti-pattern is also a sign that something is lacking in the design of
the codebase. Code design code is often a topic of discussion among TDD
practitioners, Mancuso (2018). Similar to The Excessive Setup, this anti-pattern can
also happen while developing in a TDD fashion. The Giant is often related to the
God class code design. This is an “anti-pattern for Object-Oriented Programming”
and goes against SOLID (Single responsibility, Open-Close, Liskov substitution,
Interface segregation and Dependency Inversion), Martin (2017); Stemmler (2022)
principles as well.

The Nuxtjs Project

In TDD, The Giant anti-pattern often shows itself with many assertions in a single
test case. Dave Farley demonstrates this in his video. The same test file used from
Nuxtjs74 75 The Excessive Setup shows signs of The Giant. Inspecting the code
closer, we see a piece of code followed by assertions, some more code, then
followed by further assertions all within the same test case:

73	�https://www.codurance.com/publications/tdd-anti-patterns-chapter-1

74	�https://nuxtjs.org

75	�https://github.com/nuxt/nuxt.js/blob/d4b9e4b0553bcd617ecbc0b8b76871070b347fcb/packages/server/test/
server.test.js#L166

�https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
 https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
 https://nuxtjs.org
 https://github.com/nuxt/nuxt.js/blob/d4b9e4b0553bcd617ecbc0b8b76871070b347fcb/packages/server/test
 https://github.com/nuxt/nuxt.js/blob/d4b9e4b0553bcd617ecbc0b8b76871070b347fcb/packages/server/test

87

Common patterns that make TDD harder

1	 test(‘should setup middleware’, async () => {

2	 const nuxt = createNuxt()

3	 const server = new Server(nuxt)

4	 server.useMiddleware = jest.fn()

5	 server.serverContext = { id: ‘test-server-context’ }

6	

7	 await server.setupMiddleware()

8	

9	 expect(server.nuxt.callHook).toBeCalledTimes(2)

10	 �expect(server.nuxt.callHook).nthCalledWith(1, ‘render:setupMiddleware’,

server.app)

11	 �expect(server.nuxt.callHook).nthCalledWith(2, ‘render:errorMiddleware’,

server.app)

12	

13	 expect(server.useMiddleware).toBeCalledTimes(4)

14	 expect(serveStatic).toBeCalledTimes(2)

15	 �expect(serveStatic).nthCalledWith(1, ‘resolve(/var/nuxt/src, var/nuxt/

static)’, server.options.render.static)

16	 expect(server.useMiddleware).nthCalledWith(1, {

17	 dir: ‘resolve(/var/nuxt/src, var/nuxt/static)’,

18	 id: ‘test-serve-static’,

19	 prefix: ‘test-render-static-prefix’

20	 })

21	 �expect(serveStatic).nthCalledWith(2, ‘resolve(/var/nuxt/build, dist, client)’,

server.options.render.dist)

22	 expect(server.useMiddleware).nthCalledWith(2, {

23	 handler: {

24	 dir: ‘resolve(/var/nuxt/build, dist, client)’,

25	 id: ‘test-serve-static’

26	 },

27	 path: ‘__nuxt_test’

28	 })

29	

30	 const nuxtMiddlewareOpts = {

31	 options: server.options,

32	 nuxt: server.nuxt,

33	 renderRoute: expect.any(Function),

34	 resources: server.resources

35	 }

36	 expect(nuxtMiddleware).toBeCalledTimes(1)

37	 expect(nuxtMiddleware).toBeCalledWith(nuxtMiddlewareOpts)

38	 expect(server.useMiddleware).nthCalledWith(3, {

LEVEL III

88

Common patterns that make TDD harder

39	 id: ‘test-nuxt-middleware’,

40	 ...nuxtMiddlewareOpts

41	 })

42	

43	 const errorMiddlewareOpts = {

44	 resources: server.resources,

45	 options: server.options

46	 }

47	 expect(errorMiddleware).toBeCalledTimes(1)

48	 expect(errorMiddleware).toBeCalledWith(errorMiddlewareOpts)

49	 expect(server.useMiddleware).nthCalledWith(4, {

50	 id: ‘test-error-middleware’,

51	 ...errorMiddlewareOpts

52	 })

53	 })

The point of attention here is to reflect on whether it makes sense to break out
each block of code and assertion to its own individual test case. The issue here
is having a test case that is structured so that it contains a block of test code
assertions followed by further test code and then more subsequent assertions.

It would require further inspection to double-check if it is possible to break the
code as suggested above. However, this scenario is a good example of how
The Giant anti-pattern can manifest itself. As Dave Farley says in his video, this
practice is not recommended.

Brian Okken in Python Testing with pytest (Okken 2022) also outlines that having
a test setup with an Arrange-Assert-Act-Assert-Act-Assert structure is an anti-
pattern. He argues that such a style works until the test fails. This is because
when it does indeed fail, any of the previous actions could have caused the
failure, making it difficult detect the cause of the failure quickly.

Points of Attention
1.	 Test after, instead of test first.

The Excessive Setup

A test that requires a lot of work setting up in order to even begin testing.
Sometimes several hundred lines of code are used to set up the environment for
one test, with several objects involved, making it difficult to really ascertain what
is tested due to the “noise” of all the setups going on, Carr (2022).

LEVEL III

89

Common patterns that make TDD harder

The Excessive Setup is covered in Episode 1 of the video76 series covering the
TDD anti-patterns hosted by Codurance,

Practitioners can relate to The Excessive Setup anti-pattern to the non-practice of
TDD from the start and the lack of practicing object calisthenics.77

The classic approach for The Excessive Setup anti-pattern is when you want to
test a specific behaviour within your code. Still, it becomes difficult due to the
many dependencies that you have to set up first. When the amount of these
dependencies start to hurt testability, it is a code smell.

The Nuxtjs Project

The following code demonstrates a test case from the Nuxtjs framework which
shows this anti-pattern. The test file for the server starts with a few mocks, and
then it continues, until the method beforeEach which contains more setup work
(setting up the mocks).

1	 jest.mock(‘compression’)

2	 jest.mock(‘connect’)

3	 jest.mock(‘serve-static’)

4	 jest.mock(‘serve-placeholder’)

5	 jest.mock(‘launch-editor-middleware’)

6	 jest.mock(‘@nuxt/utils’)

7	 jest.mock(‘@nuxt/vue-renderer’)

8	 jest.mock(‘../src/listener’)

9	 jest.mock(‘../src/context’)

10	 jest.mock(‘../src/jsdom’)

11	 jest.mock(‘../src/middleware/nuxt’)

12	 jest.mock(‘../src/middleware/error’)

13	 jest.mock(‘../src/middleware/timing’)

14	

15	 describe(‘server: server’, () => {

16	 const createNuxt = () => ({

17	 options: {

18	 dir: {

19	 static: ‘var/nuxt/static’

20	 },

21	 srcDir: ‘/var/nuxt/src’,

22	 buildDir: ‘/var/nuxt/build’,

76	�https://www.codurance.com/publications/tdd-anti-patterns-chapter-1

77	�Object Calisthenics was introduced in the book The ThoughtWorks Anthology: Essays on Software Technology
and Innovation (Steinberg 2008), in there nine steps to better software design were introduced.

LEVEL III

�https://www.codurance.com/publications/tdd-anti-patterns-chapter-1

90

Common patterns that make TDD harder

23	 globalName: ‘test-global-name’,

24	 globals: { id: ‘test-globals’ },

25	 build: {

26	 publicPath: ‘__nuxt_test’

27	 },

28	 router: {

29	 base: ‘/foo/’

30	 },

31	 render: {

32	 id: ‘test-render’,

33	 dist: {

34	 id: ‘test-render-dist’

35	 },

36	 static: {

37	 id: ‘test-render-static’,

38	 prefix: ‘test-render-static-prefix’

39	 }

40	 },

41	 server: {},

42	 serverMiddleware: []

43	 },

44	 hook: jest.fn(),

45	 ready: jest.fn(),

46	 callHook: jest.fn(),

47	 resolver: {

48	 requireModule: jest.fn(),

49	 resolvePath: jest.fn().mockImplementation(p => p)

50	 }

51	 })

52	

53	 beforeAll(() => {

54	 �jest.spyOn(path, ‘join’).mockImplementation((...args) => `join(${args.

join(‘, ‘)})`)

55	 �jest.spyOn(path, ‘resolve’).mockImplementation((...args) => `resolve(${args.

join(‘, ‘)})`)

56	 connect.mockReturnValue({ use: jest.fn() })

57	 serveStatic.mockImplementation(dir => ({ id: ‘test-serve-static’, dir }))

58	 nuxtMiddleware.mockImplementation(options => ({

59	 id: ‘test-nuxt-middleware’,

60	 ...options

61	 }))

62	 errorMiddleware.mockImplementation(options => ({

LEVEL III

91

Common patterns that make TDD harder

63	 id: ‘test-error-middleware’,

64	 ...options

65	 }))

66	 createTimingMiddleware.mockImplementation(options => ({

67	 id: ‘test-timing-middleware’,

68	 ...options

69	 }))

70	 launchMiddleware.mockImplementation(options => ({

71	 id: ‘test-open-in-editor-middleware’,

72	 ...options

73	 }))

74	 servePlaceholder.mockImplementation(options => ({

75	 key: ‘test-serve-placeholder’,

76	 ...options

77	 }))

78	 })

79	 })

Reading the test from the beginning gives an idea that to start with, there are
13 jest.mock invocations. Besides that, there is more setup on the beforeEach,
around 9 spies and stub setups. Probably, if we wanted to create a new test case
from scratch or move tests across different files, we would need to keep the same
excessive setup as it is.

The Testable Project

The Excessive Setup anti-pattern is a common trap. The following code is from
a research project called Testable, Marabesi and Silveira (2020) and depicts a
single function that also suffers from many dependencies, leading to an excessive
setup to get the function to execute:

1	 import { Component } from ‘react’;

2	 import PropTypes from ‘prop-types’;

3	 import { Redirect } from ‘react-router’;

4	 �import Emitter, { PROGRESS_UP, LEVEL_UP } from ‘../../../../packages/emitter/

Emitter’;

5	 import { track } from ‘../../../../packages/emitter/Tracking’;

6	 import { auth } from ‘../../../../pages/login/Auth’;

7	 import Reason from ‘../../../../packages/engine/Reason’;

8	 import EditorManager from ‘../editor-manager/EditorManager’;

9	 import Guide from ‘../guide/Guide’;

10	 import Intro from ‘../intro/Intro’;

11	 import DebugButton from ‘../../buttons/debug/Debug’;

12	 import {SOURCE_CODE, TEST_CODE} from ‘../editor-manager/constants’;

LEVEL III

92

Common patterns that make TDD harder

13	 import {executeTestCase} from ‘../../../../packages/engine/Tester’;

14	

15	 const Wrapped = (

16	 code,

17	 test,

18	 testCaseTests,

19	 sourceCodeTests,

20	 guideContent,

21	 whenDoneRedirectTo,

22	 waitCodeToBeExecutedOnStep,

23	 enableEditorOnStep,

24	 trackSection,

25	

26	 testCaseStrategy,

27	 sourceCodeStrategy,

28	

29	 disableEditor,

30	 introContent,

31	 enableIntroOnStep,

32	 editorOptions,

33	 attentionAnimationTo = []

34) => {

35	 class Rocket extends Component {

36	

37	 state = {

38	 code: {

39	 [SOURCE_CODE]: code,

40	 [TEST_CODE]: test

41	 },

42	 editorOptions: editorOptions || {

43	 [SOURCE_CODE]: {

44	 readOnly: true

45	 },

46	 [TEST_CODE]: {}

47	 },

48	 done: false,

49	 showNext: false,

50	 currentHint: 0,

51	 initialStep: 0,

52	 introEnabled: false,

53	 intro: introContent || {

54	 steps: [],

LEVEL III

93

Common patterns that make TDD harder

55	 initialStep: 0

56	 },

57	 editorError: false,

58	 }

59	 }

60	 }

The number of parameters to test the function are many such that if anyone were
to begin writing a new test case, they will likely forget what to pass in order to
receive the desired result.

Farley (2021) shows another example from Jenkins, an open-source CI/CD
project. He depicts a particular test case that builds a web browser to assert the
URL being used. In this example, it could have achieved the same outcome in a
much simpler way but using a regular object calling a method to assert.

Points of Attention
1.	 Revisit the SOLID for the test case and arrange it accordingly (do not fear

refactor tests)
2.	Are you adding a test case that requires changing too many items in the

setup? Rearrange the tests.

The Inspector

A unit test that violates encapsulation in an effort to achieve 100% code coverage
but knows so much about what is going on in the object that any attempt to
refactor will break the existing test and require any change to be reflected in the
unit test Carr (2022).

The Inspector is covered in Episode 2 of the video78 series covering the TDD anti-
patterns hosted by Codurance.

Often, the purpose of testing is combined with “inspection”, which can be a result
of couples the test case to implementation details such as reflection or exposing
internal behaviour to inspect the output.

Ideally, the way to think about a given scenario is to test for behaviour instead.

The Git Release Bot Project – Exposing Details

Sometimes while testing, it gets a bit trickier as often we find ourselves
in situations where we would like to verify that if given an input X we will
receive the outcome Y. In the following code snippet, there is the method

78	 https://www.codurance.com/publications/tdd-anti-patterns-chapter-2

LEVEL III

https://www.codurance.com/publications/solid-why-and-what
https://www.codurance.com/publications/tdd-anti-patterns-chapter-2
 https://www.codurance.com/publications/tdd-anti-patterns-chapter-2

94

Common patterns that make TDD harder

getFilesToWriteRelease (line 17) and setFilesToWriteRelease (line 22), if we think
about the context of the class, why do such methods exist?

1	 class Assembly

2	 {

3	 /* skipped code */

4	

5	 public function __construct(

6	 FindVersion $findVersion,

7	 FileRepository $fileRepository,

8	 string $branchName,

9	 FilesToReleaseRepository $filesToReleaseRepository

10) {

11	 $this->findVersion = $findVersion;

12	 $this->fileRepository = $fileRepository;

13	 $this->branchName = $branchName;

14	 $this->filesToReleaseRepository = $filesToReleaseRepository;

15	 }

16	

17	 public function getFilesToWriteRelease(): array

18	 {

19	 return $this->filesToWriteRelease;

20	 }

21	

22	 public function setFilesToWriteRelease(array $filesToWriteRelease)

23	 {

24	 $this->filesToWriteRelease = $filesToWriteRelease;

25	 return $this;

26	 }

27	

28	 public function packVersion(): Release

29	 {

30	 $filesToRelease = $this->getFilesToWriteRelease();

31	

32	 if (count($filesToRelease) === 0) {

33	 throw new NoFilesToRelease();

34	 }

35	

36	 $files = [];

37	

38	 /** @var File $file */

39	 foreach ($filesToRelease as $file) {

LEVEL III

95

Common patterns that make TDD harderLEVEL III

40	 $files[] = $this->fileRepository->findFile(

41	 $this->findVersion->getProjectId(),

42	 sprintf(‘%s%s’, $file->getPath(), $file->getName()),

43	 $this->branchName

44);

45	 }

46	

47	 $versionToRelease = $this->findVersion->versionToRelease();

48	

49	 $release = new Release();

50	 $release->setProjectId($this->findVersion->getProjectId());

51	 $release->setBranch($this->branchName);

52	 $release->setVersion($versionToRelease);

53	

54	 �$fileUpdater = new FilesUpdater($files, $release, $this-

>filesToReleaseRepository);

55	 $filesToRelease = $fileUpdater->makeRelease();

56	

57	 $release->setFiles($filesToRelease);

58	

59	 return $release;

60	 }

61	 }

In this sense, if we think about Object-Orientated Programming, McLaughlin,
Pollice, and West (2007), we talk about invoking methods in objects. Such
invocations allow us to interact and receive the result. But, the get/set methods
break the encapsulation and exist solely for the purpose of testing.

Inspecting Code with Reflection

Another possible reason for experiencing The inspector is to add complexity to
achieve inspection for a specific part of the code with reflection. Before proceeding,
let’s recap what actual reflection is and why it is used in the first place.

Baeldung79 gives a few examples of why you might need reflection, the main
usage is to get an understanding of a given part of the code, which methods,
which properties and act on those. The following example is used on his site:

1	 public class Employee {

2	 private Integer id;

79	Guide to ReflectionTestUtils for Unit Testing.

https://www.baeldung.com/spring-reflection-test-utils

96

Common patterns that make TDD harderLEVEL III

3	 private String name;

4	 }

5	

6	 @Test

7	 public void whenNonPublicField_thenReflectionTestUtilsSetField() {

8	 Employee employee = new Employee();

9	 ReflectionTestUtils.setField(employee, “id”, 1);

10	

11	 assertTrue(employee.getId().equals(1));

12	 }

Now that we understand the reflection’s superpowers, why might it hurt
testability? Luckily, we had this question asked at StackOverflow a few years
ago.80

The thread is long and shares different opinions developers posted there. But in
short, the consensus is that it is a bad practice to go to that level of detail when
testing code.

Points of Attention
1.	 Avoid exposing methods purely for the purpose of inspecting output or

defining inputs within a test case.
2.	Modifying production code for the sake of testing is a smell of something

wrong in the design.

80	�Is it bad practice to use Reflection in Unit testing?

https://stackoverflow.com/questions/2811141/is-it-bad-practice-to-use-reflection-in-unit-testing

Level IV

98

Common patterns that make TDD harder

Level IV

If you made it this far, this level shows one of the most difficult scenarios that the
test-first approach brings. At this level, we will go through The Mockery, one of
the most popular anti-pattern that came out of the survey.

•	 Watch out for testing the test double instead of the production code.

•	 A single test case can have multiple anti-patterns at once.

•	 Avoid not cleaning up the created data for a specific test case, it is com-
mended to avoid sharing data across tests. Also relates to The Peeping Tom.

•	 Avoid having a test suite that takes a long time to run whenever possible.

The Mockery

Sometimes mocking can be good and handy. But, at other times, practitioners can
lose themselves trying to mock out what isn’t being tested. In this case, a unit test
contains so many mocks, stubs, and/or fakes that the system under test isn’t even
being tested at all, instead, data returned from mocks is what is being tested Carr
(2022).

The Mockery is covered in Episode 2 of the video81 series covering the TDD anti-
patterns hosted by Codurance.

The Mockery is one of the most popular anti-patterns experienced by
practitioners. It seems that everyone has had some experience mocking code
to allow them to test some behaviour. The first idea of mocking is simple: avoid
external code to focus on what you want to test. However, mocking can be tricky
to implement correctly.

Mocking can also take many different approaches. For example, Fowler (2022b)
and Bob (2022) classified the various types of mocking as follows: dummies,
spies, fakes and stubs. Although Uncle Bob refers to “True mocks,” whereas
Martin Fowler refers to “Test double”.

Uncle Bob explains that “mocks” got spread as it is easier to say: “I will mock
that,” or “can you mock this”?

The difference between those is important because we, as practitioners, have
the habit of calling everything a mock, thus causing confusion around the true
intention. For example, Spring.io goes even further, avoiding the debate about if
we should use mocks or not (referring to the Classical and the London School of

81	� https://www.codurance.com/publications/tdd-anti-patterns-chapter-2

LEVEL IV

�https://www.codurance.com/publications/tdd-anti-patterns-chapter-2
https://www.codurance.com/publications/tdd-anti-patterns-chapter-2

99

Common patterns that make TDD harderLEVEL IV

TDD)82 – I will do the same, this is a discussion that deserves a blog post itself.

Martin Fowler also wrote about this very same subject, Fowler (2022) and agrees
that for a while, he also thought about mocks and stubs being the same.83

•	 DUMMIES – You pass in something, often resulting in the object not being
utilised at all

•	 STUB – Unlike dummies, stubs are objects created so that you do care how
they are used. For example, to tricky an authorization to test if the user can/
can’t do certain actions in the system.

•	 SPIES – To assert that a method was called by the system under test, as the
post by Martin (2014): “You can use Spies to see inside the workings of the
algorithms you are testing”.

•	 TRUE MOCKS – Is interested in the behaviour instead of the return of func-
tions. It cares about which functions were invoked, with what arguments, and
how often.

•	 FAKES – Fakes have business logic, so they can drive the system under test
with different sets of data.

The Mockery anti-pattern refers to the same definition stated by Uncle Bob,
referring to all mocks. To make things clear, let’s split the anti-pattern into two
parts: the first is the excessive number of mocks needed to test a class. For
example – it’s also related to The Excessive Setup.

The second part is testing the mock instead of its interaction with the code under
testing. For example, if we have the following code sample showing an interaction
with a payment gateway.

1	 /**

2	 * Two constructor dependencies, both need to be

3	 * mocked in order to test the process method.

4	 */

5	 class PaymentService(

6	 private val userRepository: UserRepository,

7	 private val paymentGateway: PaymentGateway

8) {

9	

10	 fun process(

11	 user: User,

12	 paymentDetails: PaymentDetails

13): Boolean {

82	�Are You Chicago Or London When It Comes To TDD? – https://www.youtube.com/watch?v=_S5iUf0ANyQ

83	�In practice, practitioners still treat different test doubles as being the same. The communication falls back to
“mock this” or “mock that”.

 https://www.youtube.com/watch?v=_S5iUf0ANyQ

100

Common patterns that make TDD harder

�

14	 if (userRepository.exists(user)) {

15	 return paymentGateway.pay(paymentDetails)

16	 }

17	

18	 return false

19	 }

20	 }

With the given test:

1	 class TestPaymentService {

2	 private val userRepository: UserRepository = mockk()

3	 private val paymentGateway: PaymentGateway = mockk()

4	 private val paymentService = PaymentService(

5	 userRepository,

6	 paymentGateway

7)

8	

9	 @Test

10	 fun paymentServiceProcessPaymentForUser() {

11	 val user: User = User()

12	 every { userRepository.exists(any()) } returns true

13	 �every { paymentGateway.pay(any()) } returns true // setting up

the return for the mock

14	

15	 �assertTrue(paymentService.process(user, PaymentDetails())) // asserting

the mock

16	 }

17	 }

Points of Attention
1.	 Historic reasons/TDD styles?
2.	As simple as the code is, the easiest is to overuse it
3.	Also, no experience in TDD

The One

A combination of several patterns, particularly The Free Ride and The Giant, a unit
test that contains only one test method which tests the entire set of functionality
an object has. A common indicator is that the test method is often the same
as the unit test name, and contains multiple lines of setup and assertions Carr
(2022).

LEVEL IV

101

Common patterns that make TDD harder

The One is covered in Episode 6 of the video84 series covering the TDD anti-
patterns hosted by Codurance.

Despite the name, The One is the anti-pattern that combines different anti-
patterns. By definition, it is related to The Giant and The Free Ride.

As we have already seen, The Giant appears when a test case tries to do
everything at once within a single test case.

There are some variants of that. The following snippet is extracted from the book
xUnit Test Patterns, Meszaros (2007) and depicts the Giant anti-pattern (even
though the number of lines is not as many as in the first episode). Despite being
shorter in length though, the following is still an example of The Giant anti-pattern
because the test case is trying to exercise all of the methods within the Flight
object within a single test:

1	 public void testFlightMileage_asKm2() throws Exception {

2	 // set up fixture

3	 // exercise constructor

4	 Flight newFlight = new Flight(validFlightNumber);

5	 // verify constructed object

6	 assertEquals(validFlightNumber, newFlight.number);

7	 assertEquals(“”, newFlight.airlineCode);

8	 assertNull(newFlight.airline);

9	 // set up mileage

10	 newFlight.setMileage(1122);

11	 // exercise mileage translator

12	 int actualKilometres = newFlight.getMileageAsKm();

13	 // verify results

14	 int expectedKilometres = 1810;

15	 assertEquals(expectedKilometres, actualKilometres);

16	 // now try it with a canceled flight

17	 newFlight.cancel();

18	

19	 try {

20	 newFlight.getMileageAsKm();

21	 fail(“Expected exception”);

22	 } catch (InvalidRequestException e) {

23	 assertEquals(“Cannot get cancelled flight mileage”,

24	 e.getMessage());

25	 }

84	�https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-6.

LEVEL IV

 https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-6

102

Common patterns that make TDD harder

The comments even give us a hint on how to split the single test case into
multiple tests. Likewise, The Free Ride also can be noted in this example, as for
each setup, some assertions follow.

The Jenkins Project

The next code example may be simpler to spot when The Free Ride anti-pattern
appears. As previously depicted, the example that follows was extracted from the
Jenkins repository. In this case, the distinction between The Free Ride and The
Giant is somewhat blurred, but still, it is easy to prevent a single test case from
doing too much.

1	 public class ToolLocationTest {

2	 @Rule

3	 public JenkinsRule j = new JenkinsRule();

4	

5	 @Test

6	 public void toolCompatibility() {

7	 �Maven.MavenInstallation[] maven = j.jenkins.getDescriptorByType(Maven.

DescriptorImpl.class).getInstallations();

8	 assertEquals(1, maven.length);

9	 assertEquals(“bar”, maven[0].getHome());

10	 assertEquals(“Maven 1”, maven[0].getName());

11	

12	 �Ant.AntInstallation[] ant = j.jenkins.getDescriptorByType(Ant.

DescriptorImpl.class).getInstallations();

13	 assertEquals(1, ant.length);

14	 assertEquals(“foo”, ant[0].getHome());

15	 assertEquals(“Ant 1”, ant[0].getName());

16	

17	 �JDK[] jdk = j.jenkins.getDescriptorByType(JDK.DescriptorImpl.class).

getInstallations();

18	 assertEquals(Arrays.asList(jdk), j.jenkins.getJDKs());

19	 assertEquals(2, jdk.length); // JenkinsRule adds a ‘default’ JDK

20	 �assertEquals(“default”, jdk[1].getName()); // make sure it’s really that

we’re seeing

21	 assertEquals(“FOOBAR”, jdk[0].getHome());

22	 assertEquals(“FOOBAR”, jdk[0].getJavaHome());

23	 assertEquals(“1.6”, jdk[0].getName());

24	 }

25	 }

LEVEL IV

103

Common patterns that make TDD harder

The Generous Leftovers

An instance where one unit test generates data that is stored somewhere, and
another test then employs that data for its own purposes. If the “generator” is not
executed, or run after the second test, the test using that data will fail outright,
Carr (2022).

The Generous Leftovers is covered in Episode 2 of the video85 series covering the
TDD anti-patterns hosted by Codurance.

While practicing TDD, tasks such as setting up the state in which the test will run
are part of the basic fundamentals, whether that be setting up fake data, listeners,
authentication or any other dependent state.

We define them because they are crucial for the test, but sometimes we forget
to reset the state to be what it was before the test was run. In short, the phases
that a test case should have, as Fowler (2022) and Meszaros (2007), are: “setup,
exercise, verify, teardown.” The resetting of the state should occur within the
teardown stage to avoid affecting other test cases.

Not doing this state reset can cause different issues. The first one is causing the
next test to fail, where it would have otherwise passed without problems. The
following list tries to depict a few scenarios in which this may occur.

1.	 Setting up listeners and forgetting to remove them might also cause
memory leaks.

2.	Populating data without removing them – things like files, databases, or
even cache.

3.	Last but not least, depending on one test creating the data needed and
using it in another test.

4.	Cleaning up test doubles.86

If we think about the third scenario in the above list, such behaviour could be
something that gets tricky when testing. For example, using persistent data is a
must for end-to-end testing. On the other hand, the last scenario in the list is a
common source of errors while developing guided by tests. Often, as the mock is
usually used to collect calls in the object (and verify it later), it is common to forget
to restore its state.

Codingwithhugo87 demonstrates this behaviour in a code snippet using Jest,
giving the following test case (and assume they are in the same scope):

85	https://www.codurance.com/publications/tdd-anti-patterns-chapter-2

86	Also relates to keeping state between tests as discussed previously.

87	Jest set, clear and reset mock/spy/stub implementation.

LEVEL IV

https://www.codurance.com/publications/tdd-anti-patterns-chapter-2
https://www.codurance.com/publications/tdd-anti-patterns-chapter-2
https://codewithhugo.com/jest-stub-mock-spy-set-clear

104

Common patterns that make TDD harder

1	 const mockFn = jest.fn(); // setting up the mock

2	

3	 function fnUnderTest(args1) {

4	 mockFn(args1);

5	 }

6	

7	 test(‘Testing once’, () => {

8	 fnUnderTest(‘first-call’);

9	 expect(mockFn).toHaveBeenCalledWith(‘first-call’);

10	 expect(mockFn).toHaveBeenCalledTimes(1);

11	 });

12	

13	 test(‘Testing twice’, () => {

14	 fnUnderTest(‘second-call’);

15	 expect(mockFn).toHaveBeenCalledWith(‘second-call’);

16	 expect(mockFn).toHaveBeenCalledTimes(1);

17	 });

The first test that calls the function under test will pass, but the second will fail.
The reason behind this is the lack of a resetting of the mock. The test fails to say
that the mockFn was called twice. Correcting this is as easy as:

1	 test(‘Testing twice’, () => {

2	 mockFn.mockClear(); // clears the previous execution

3	

4	 fnUnderTest(‘second-call’);

5	 expect(mockFn).toHaveBeenCalledWith(‘second-call’);

6	 expect(mockFn).toHaveBeenCalledTimes(1);

7	 });

Such behaviour is not as often faced by JavaScript practitioners, as the JavaScript
functional scope prevents that out of the box within the language constructs. However,
being mindful of these details can still make a difference while writing tests.88

Points of Attention
1.	 Lack of practice on TDD.
2.	Persistent fixtures can become a source of errors.
3.	Your tests are coupled on a specific sequence to be executed.
4.	Mixing different types of tests, integration/unit/end-to-end.

88	�More recently Marvin Hagemeister wrote a blog post entitled Running 1000 tests in 1s and much of the
performance achieved was due to disabling some default behaviour of cleaning up resources that Jest has. When
such a level of optimization is needed, having control over the state becomes crucial.

LEVEL IV

https://marvinh.dev/blog/running-1000-test-in-1s

105

Common patterns that make TDD harderLEVEL IV

The Slow Poke
A unit test that runs incredibly slow. When practitioners kick it off, they have time
to go to the bathroom, grab a smoke, or worse, kick the test off before they go
home at the end of the day, Carr (2022).

The Slow Poke reminds me of the Japanese video game Pokémon. The game
contains a creature with this name who is able to make its opponents less
efficient when attacking. It is this characteristic that it shares with the anti-pattern
of the same name. Here though, the Slow Poke anti-pattern reduces the efficiency
of a test suite run. Usually, this anti-pattern causes an automated test suite to take
a longer time to run and as a result, lengthen the feedback cycle.

Time-related code is usually difficult to handle under a test case and is often a key
reason why The Slow Poke anti-pattern surfaces. Time-related code requires us
to manipulate time in different ways to allow us to simulate time-based scenarios.
For example, we might wish to test that an automated payment run is triggered at
the end of a month within a payment system.

In order to do that, we would need a way to handle time and check for a specific
date (the last day of the month, in this case). Alongside the date, we would likely
also need to simulate the time (perhaps somewhere around the morning or the
evening). In other words, we need a way to handle the time and deal with it
without the need to wait until the end of the month to run the test.

Time is asynchronous and if depended upon directly, leads to non-determinism,
as mentioned by Fowler (2011). Fortunately, there is a way to overcome this
situation but utilizing mocking within our tests.

Pushing towards more integration tests or end-to-end tests can also transform
the test suite into a pain to run, taking long hours or even days to complete. This
approach is also related to the ice cream cone test strategy. In an ideal scenario,
you would follow the pyramid testing strategy where you would have as the base:
more unit tests, a few integration tests, and even fewer end-to-end tests, Vocke
(2018).

Points of Attention
1.	 Monolithic code bases where compile time takes more time than

executing the tests
2.	Testing with strategies that the framework already gives out of the box
3.	Having too many integrations or e2e tests instead of unit (ice cream code

as seen previously)

Conclusion –
Patterns That
Make TDD
Harder

107

Common patterns that make TDD harder

Conclusion – Patterns That Make
TDD Harder

Having reached the end of this book, you should now have a better awareness
and understanding of some of the patterns that can make test driving code
difficult.

We started this journey by understanding the origins of TDD anti-patterns.
Previously we discussed some of the history behind the creation of this book,
beginning with the challenges faced by practitioners, on a daily basis, to test
applications. We also covered the Test Pyramid which is commonly followed in
the software development industry today. We saw that different authors gave
awareness to the anti-patterns listed in different forms.

We also explored what is said about anti-patterns nowadays.

The survey shared with practitioners to understand what they know about TDD
anti-patterns and what were the possible impact that those anti-patterns caused
in the day-to-day coding. The data gathered from practitioners were covered by
four different categories:

•	 Professional background – get to know better who is answering the survey.

•	 TDD practices on the daily basis – the practices that are practiced daily.

•	 TDD practices of companies I worked at – the practices that companies
have daily regarding TDD.

•	 Anti-patterns – a section dedicated to getting information if practitioners can
recall the anti-patterns.

•	 Finishing up – Share an email to share results from the data gathered.

The survey data triggered discussions about how TDD is applied at companies.

With the introduction and the data collected in place, we moved on to dive
deeper into the anti-patterns list.

The method used in this book to present the list of anti-patterns was different to
the one that is usually found on the internet. Here we adopted the idea of levels
that represent the journey a practitioner will go on whilst learning TDD and the
anti-patterns that might pop up during that journey.

CONCLUSION

108

Common patterns that make TDD harder

In total, we divided the anti-patterns into four levels:

•	 Level I – This chapter covered most of the anti-patterns as they spot early on
when practitioners are learning how to test-driving code.

•	 Level II – This chapter was marked as a beginner moving towards an inter-
mediate level which led to more challenges during the TDD practice. Here
we saw that anti-patterns can also be related to the lack of using principles
of software development such as Single Responsibility in test cases.

•	 Level III – This chapter is an extension of Level II as it goes deeper into soft-
ware design and relates object calisthenics with the anti-patterns presented.

•	 Level IV – Last but not least, here, anti-patterns such as The Mockery were
covered, which introduces a new way of thinking about how to test drive
code using test doubles and things that make the test suite slow, also known
as The Slow Poke.

The levels were created to give this book a structure and a way to format the anti-
patterns in such a way that could be matched with different subjects while practicing
TDD, which does not mean that only beginners will face scenarios depicted in the
level II or that only experienced developers will face scenarios in level IV.

Last but not least, with this content, hopefully, we can
reach an agreement that what we shared here are patterns
that make testing harder.

Even though they are named “anti-patterns,” the attempt
here is to rather make them “patterns” that make test

driving code more difficult and remove the negative tone from them. As most
code bases can have at least one or more of them, and practitioners will deal with
at least one of them in their journey.

What the Experience Has to Say

I don’t recall who introduced me to it, but I remember reading the iconic book by
Kent Beck, TDD by Example on my commute time. Every page that I turned was
a discovery. Those page turns were also tinged with frustration. The baby steps
approach was in conflict with the confidence I had that code would work. “It will
pass the test, it is hard coded”. One of the listed misconceptions by Olena Borzenko
in her talk in 2021 at the TDD conference related to that type of thinking.

On the other hand, thinking about when I started out, and the context where I
was, did not help me to improve my technical skills. Specifically, TDD, which also
connects to the results we saw in the survey (more than 50% of companies do not
practice TDD).

One of the biggest challenges for practitioners is to keep going with the test-first
approach, regardless of the environment, regardless of the team we are working

CONCLUSION

… with this content, hopefully, we
can reach an agreement that what
we shared here are patterns that
make testing harder.

109

Common patterns that make TDD harderCONCLUSION

with. We are still learning and the adoption of practices that
are taken as good defaults for projects are not common
practice for the majority of us. I recall joining projects that
didn’t have a test-first culture. The approach was to build
it from the ground up, and in that, I am not alone, Pérez
(2022).

Where To Go From Here

Despite the journey covered in this book, you might also
want to go a bit further in the practice of TDD and what
other authors have to say, for that, I compiled the following
list of resources that could help you.

•	 YouTube has many talks around TDD, to keep track of what I found interest-
ing I created a playlist on YouTube that might be worth checking. The focus
was to build a progressive playlist, starting from the basics and incrementing
the complexity step-by-step.

•	 Effective Software Testing by Mauricio Aniche – This is one of the books that
is a must-read for practitioners, as he shares a detailed point of view on how
to write tests and at the same time delivers a guide for developers to follow.

•	 We haven’t touched on the London school x Chicago school of the TDD, it
might be worth checking this out as well, as it might impact which patterns
practitioners will face more based on the chosen approach.

Last but not least, there are many books about TDD covering different aspects
of the practice and we already cited some of them throughout the book. But we
haven’t touched yet upon how to keep up to date with the practice beyond the
literature.

As much as books cover a specific subject in great detail, I often find that
engaging with the various software development communities around me is the
best mechanism for becoming aware of new things and the number of insights it
gives me.

There are a vast number of software development communities right around
the world today. The vast majority can be found on meetup.com. For example,
Codurance hosts events regularly; Tech Excellence also hosts events focused on
technical and core skills.

Getting in touch with people in the community helps not only you as an individual
to meet with people and discuss what they are doing, but it can also be an
opportunity to share what you learned and what you want to talk about. Despite
the small list of groups listed here, I am sure you will find a community nearby that
talks about your favourite subject.

One of the biggest challenges for
practitioners is to keep going with
the test-first approach, regardless
of the environment, regardless of
the team we are working with. We
are still learning and the adoption
of practices that are taken as good
defaults for projects are not common
practice for the majority of us.

https://www.youtube.com/playlist?list=PLN7yVcqYnDlUqjF-9Y5RbOMlqkghPA0oH
https://softwareengineering.stackexchange.com/questions/123627/what-are-the-london-and-chicago-schools-of-tdd
https://www.meetup.com/pt-BR/codurance-craft-events
https://www.meetup.com/pt-BR/techexcellence

110

Common patterns that make TDD harderAPPENDIX

Appendix

Here you will find resources that are related to the book.Google form – Survey

Aniche, Mauricio. 2022. “Mauricio Aniche: How Code Coverage Can Be Used and Abused to Guide
Testing.”
 https://www.youtube.com/watch?v=f1DueZcSxRse.com/watch?v=f1DueZcSxRs

Beck, Kent. 2003. Test-Driven Development: By Example. Addison-Wesley Professional.

Bob), Robert C. Martin (Uncle. 2022. “The Little Mocker.”
https://blog.cleancoder.com/uncle-bob/2014/05/14/TheLittleMocker.html

Borzenko, Olena. 2021. “TDD Misconceptions.”
https://www.youtube.com/watch?v=TbkBMeAt4K0

Bugayenko, Yegor. 2021. “SSD 14/16: Test Patterns and Anti-Patterns.”
https://www.youtube.com/watch?v=KiUb6eCGHEY

Carr, James. 2022. “TDD Anti-Patterns.”
https://web.archive.org/web/20100105084725/http://blog.james-carr.org/2006/11/03/tdd-anti-patterns

Cohn, Mike. 2009. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley
Professional.

Dijkstra, Edsger Wybe, and others. 1970. “Notes on Structured Programming.” Technological University,
Department of Mathematics.

Farley, Dave. 2021. “When Test Driven Development Goes Wrong.”
https://www.youtube.com/watch?v=UWtEVKVPBQ0&feature

Fowler, Martin. 2011. “Eradicating Non-Determinism in Tests.”
https://martinfowler.com/articles/nonDeterminism.html

———. 2022a. “Mocks Aren’t Stubs.”
https://martinfowler.com/articles/mocksArentStubs.html

———. 2022b. “TestDouble.”
https://martinfowler.com/bliki/TestDouble.html

Freeman, Steve, and Nat Pryce. 2009. Growing Object-Oriented Software, Guided by Tests. Pearson
Education.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series. Pearson Education.
https://books.google.es/books?id=6oHuKQe3TjQC

Glitzel, Rodaney. 2022. “Singleton and Unit Testing.”
https://stackoverflow.com/questions/8256989/singleton-and-unit-testing/8263599#8263599

Hermans, Felienne. 2021. The Programmer’s Brain: What Every Programmer Needs to Know About
Cognition. Simon; Schuster.

about:blank
https://blog.cleancoder.com/uncle-bob/2014/05/14/TheLittleMocker.html
about:blank
about:blank
https://web.archive.org/web/20100105084725/http://blog.james-carr.org/2006/11/03/tdd-anti-patterns
https://www.youtube.com/watch?v=UWtEVKVPBQ0&feature
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/bliki/TestDouble.html
https://books.google.es/books?id=6oHuKQe3TjQC
about:blank

111

Common patterns that make TDD harderAPPENDIX

jestjs.io. 2021. “Testing Asynchronous Code.”
https://jestjs.io/docs/asynchronous

Mancuso, Sandro. 2018. “DevTernity 2018: Sandro Mancuso – Does TDD Really Lead to Good Design?”
<https://www.youtube.com/watch?v=KyFVA4Spcgg

Marabesi, Matheus. 2022. “Improving Testing Assertions.”
https://www.codurance.com/publications/improving-testing-assertionsnce.com

Marabesi, M, and I Frango Silveira. 2020. “EVALUATION of Testable, a Gamified Tool to Improve Unit
Test Teaching.” In INTED2020 Proceedings, 330–38. IATED.

Martin, Robert C. 2009. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education.

Martin, Robert C. 2014. “The Little Mocker.”
https://blog.cleancoder.com/uncle-bob/2014/05/14/TheLittleMocker

Martin, Robert Cecil. 2017. “Clean Architecture a Craftsman’s Guide to Software Structure and Design.”
https://archive.org/details/CleanArchitecture/page/n179/mode/2up

McLaughlin, Brett, Gary Pollice, and David West. 2007. Head First Object-Oriented Analysis and
Design: A Brain Friendly Guide to Ooa&D. “ O’Reilly Media, Inc.”.

Meszaros, Gerard. 2007. XUnit Test Patterns: Refactoring Test Code. Pearson Education.

Okken, Brian. 2022. Python Testing with Pytest. Pragmatic Bookshelf.

Percival, Harry, and Bob Gregory. 2020. Architecture Patterns with Python: Enabling Test-Driven
Development, Domain-Driven Design, and Event-Driven Microservices. “ O’Reilly Media, Inc.”.

Pérez, Julio César. 2022. “Una Historia de Testing.”
https://www.meetup.com/pt-BR/codurance-craft-events/events/287021364/.com

Radziwill, Nicole. 2020. “Accelerate: Building and Scaling High Performance Technology Organizations.
(Book Review) 2018 Forsgren, N., J. Humble and G. Kim. Portland or: IT Revolution Publishing. 257
Pages.” Taylor & Francis.

Steinberg, Daniel H. 2008. The Thoughtworks Anthology: Essays on Software Technology and
Innovation. Pragmatic Bookshelf.

Stemmler, Khalil. 2022. SOLID – Introduction to Software Design and Architecture with Typescript.
https://solidbook.io.

Vocke, Ham. 2018. “The Practical Test Pyramid.”
https://martinfowler.com/articles/practical-test-pyramid.html

Wang, Yuqing, Maaret Pyhäjärvi, and Mika V. Mäntylä. 2020. “Test Automation Process
Improvement in a Devops Team: Experience Report.” In 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), 314–21. https://doi.org/10.1109/
ICSTW50294.2020.00057.

https://jestjs.io/docs/asynchronous
about:blank
about:blank
about:blank
about:blank
about:blank
https://martinfowler.com/articles/practical-test-pyramid.html
https://doi.org/10.1109/ICSTW50294.2020.00057
https://doi.org/10.1109/ICSTW50294.2020.00057

112

Common patterns that make TDD harderAPPENDIX

About the authors

Matheus Marabesi is a computer engineer who is passionate about
software development. He is a skilled software craftsperson who
enjoys sharing his expertise with others. Matheus is also an aspiring
researcher with a focus on software testing and gamification. He has
created a gamified tool called Testable to help make learning testing
more engaging for software development professionals.

Matheus has been interested in computers since he was young. He
started with his first computer running Windows XP, and used to take
drawing classes alongside it. However, as he spent more time with
his computer, his interest in computing grew and his drawing fell by
the wayside. He started attending computer hardware and network
training courses, and his interest continued to expand to all aspects of
technology. This led him to pursue a degree in engineering.

Currently, Matheus is part of the Codurance Spain Software Craftsperson
team. He actively participates in community events such as meetups,
coding dojos, and workshops, where he is always willing to share his
knowledge and skills. He is also involved in open source projects and
forums related to well-designed applications, clean code, testing, and
gamification. If you’re interested in reading more about his professional
contributions, you can check out his blog at https://marabesi.com.

During his free time, he enjoys tinkering with Raspberry Pi, immersing
himself in the world of IoT, and going for runs while listening to an
electronic music playlist on his headphones.

https://marabesi.com

113

Common patterns that make TDD harderAPPENDIX

Emmanuel Valverde is a senior web development technician
who has been coding since the age of 16. He is passionate about
everything related to programming and dedicates a significant
amount of his time and energy to contributing knowledge in
various developer communities. Despite his young age, he has
gained substantial experience working in diverse companies
spanning different sectors, from product development to startups.
What characterizes Emmanuel is his unwavering commitment to
continuous learning, a passion reflected in his active involvement
in the community and open-source projects. He serves as a
co-organizer for various initiatives and projects, embodying his
dedication to helping others learn and grow professionally.

Currently, Emmanuel is a part of the Software Craftsperson team
at Codurance Spain. As a team member, he actively participates in
internal and external initiatives within various practice communities.

During his free time, he enjoys the natural beauty of Murcia, his
hometown, and indulges in sports, dancing, and spending quality
time with his loved ones.

If you’re interested in exploring his professional journey further, you
can find more information here: https://emmanuelvalverde.dev/

https://emmanuelvalverde.dev/

114

Common patterns that make TDD harderLEVEL I

hello@codurance.com
codurance.com

	Foreword
	Acknowledgments
	Contact Us
	License
	Preface
	Who Should Read This Book?

	Introduction
	Book Structure
	A Note Before Starting

	A Case for TDD Anti-Patterns
	The Survey
	Methodology
	Results
	Professional Background
	TDD practices on the daily basis
	TDD practices at companies I worked at
	Anti-Patterns

	Level I
	The Operating System Evangelist
	The Lutris Project
	Points of Attention

	The Local Hero
	Points of Attention

	The Enumerator
	Points of Attention

	The Free Ride
	The Puppeteer Project
	The Jenkins Project
	Points of Attention

	The Sequencer
	Points of Attention

	The Nitpicker
	Laravel Assertions
	The AWS CloudFront URL Signature Utility Project
	The Metrik Project
	Points of Attention

	The Dodger
	Points of Attention

	The Liar
	Async Test with Jest
	Points of Attention

	The Loudmouth
	The Testable Project
	Points of Attention

	Level II
	The Success Against All Odds
	Refactoring Success Against All Odds
	Points of Attention

	The Stranger
	The Hidden Dependency
	The Vuex Dependency
	The Database Dependency
	Points of Attention

	The Greedy Catcher
	The Laravel/Cashier Stripe Project
	Parsing the JTW token with JavaScript
	Points of Attention

	The Peeping Tom
	The Secret Catcher
	Points of attention

	Level III
	The Giant
	The Nuxtjs Project
	Points of Attention

	The Excessive Setup
	The Nuxtjs Project
	The Testable Project
	Points of Attention

	The Inspector
	The Git Release Bot Project – Exposing Details

	Inspecting Code with Reflection
	Points of Attention

	Level IV
	The Mockery
	Points of Attention
	The One
	The Jenkins Project

	The Generous Leftovers
	Points of Attention

	The Slow Poke
	Points of Attention

	Conclusion – Patterns That Make TDD Harder
	What the Experience Has to Say
	Where To Go From Here

	Appendix
	About the authors

